Skip to main content
Log in

Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Bacterial biofilms are a common cause of chronic medical implant infections. Treatment and eradication of biofilms by conventional antibiotic therapy has major drawbacks including toxicity and side effects associated with high-dosage antibiotics. Additionally, administration of high doses of antibiotics may facilitate the emergence of antibiotic resistant bacteria. Thus, there is an urgent need for the development of treatments that are not based on conventional antibiotic therapies. Presented herein is a novel bacterial biofilm combination treatment independent of traditional antibiotics, by using low electric fields in combination with small molecule inhibitors of bacterial quorum sensing – autoinducer-2 analogs. We investigate the effect of this treatment on mature Escherichia coli biofilms by application of an alternating and offset electric potential in combination with the small molecule inhibitor for 24 h using both macro and micro-scale devices. Crystal violet staining of the macro-scale biofilms shows a 46 % decrease in biomass compared to the untreated control. We demonstrate enhanced treatment efficacy of the combination therapy using a high-throughput polydimethylsiloxane-based microfluidic biofilm analysis platform. This microfluidic flow cell is designed to reduce the growth variance of in vitro biofilms while providing an integrated control, and thus allows for a more reliable comparison and evaluation of new biofilm treatments on a single device. We utilize linear array charge-coupled devices to perform real-time tracking of biomass by monitoring changes in optical density. End-point confocal microscopy measurements of biofilms treated with the autoinducer analog and electric fields in the microfluidic device show a 78 % decrease in average biofilm thickness in comparison to the negative controls and demonstrate good correlation with real-time optical density measurements. Additionally, the combination treatment showed 76 % better treatment efficacy compared to conventional antibiotic therapy. Taken together these results suggest that the antibiotic-free combination treatment described here may provide an effective alternative to traditional antibiotic therapies against bacterial biofilm infections. Use of this combination treatment in the medical and environmental fields would alleviate side effects associated with high-dosage antibiotic therapies, and reduce the rise of antibiotic-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • S. Al-Nasiry, N. Geusens, M. Hanssens, C. Luyten, R. Pijnenborg, The use of alamar blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod (Oxford, England) 22(5), 1304–1309 (2007)

    Article  Google Scholar 

  • G.G. Anderson and G.A. O’toole. Innate and Induced Resistance Mechanisms of Bacterial Biofilms. Bacterial Biofilms, Springer: 85–105 (2008)

  • S. A. Blenkinsopp, A. Khoury, J. Costerton, Electrical enhancement of biocide efficacy against pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 58(11), 3770–3773 (1992)

    Google Scholar 

  • R. Caubet, F. Pedarros-Caubet, M. Chu, E. Freye, M. de Belem Rodrigues, J. Moreau, W. Ellison, A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob. Agents Chemother. 48(12), 4662–4664 (2004)

    Article  Google Scholar 

  • W. Characklis, Bioengineering report: fouling biofilm development: a process analysis. Biotechnol. Bioeng. 23(9), 1923–1960 (1981)

    Article  Google Scholar 

  • J. W. Costerton, B. Ellis, K. Lam, F. Johnson, A. E. Khoury, Mechanism of Electrical Enhancement of Efficacy of Antibiotics in Killing Biofilm Bacteria. Antimicrob Agents Chemother 38(12), 2803–2809 (1994)

    Article  Google Scholar 

  • J. W. Costerton, P. S. Stewart, E. P. Greenberg, Bacterial biofilms: A common cause of persistent infections. Science 284(5418), 1318–1322 (1999)

    Article  Google Scholar 

  • M. P. DeLisa, J. J. Valdes, W. E. Bentley, Mapping stress-induced changes in autoinducer Ai-2 production in Chemostat-cultivated Escherichia coli K-12. J. Bacteriol. 183(9), 2918–2928 (2001)

    Article  Google Scholar 

  • C. A. Fux, P. Stoodley, L. Hall-Stoodley, J. W. Costerton, Bacterial biofilms: A diagnostic and therapeutic challenge. Expert Rev Anti-Infect Ther 1(4), 667–683 (2003)

    Article  Google Scholar 

  • S. Gamby, V. Roy, M. Guo, J. A. Smith, J. Wang, J. E. Stewart, X. Wang, W. E. Bentley, H. O. Sintim, Altering the communication networks of multispecies microbial systems using a diverse toolbox of Ai-2 analogues. ACS Chem. Biol. 7(6), 1023–1030 (2012)

    Article  Google Scholar 

  • M. Ghannoum and G.A. O’Toole. Microbial Biofilms, ASM Press (2004)

  • M. Giladi, Y. Porat, A. Blatt, E. Shmueli, Y. Wasserman, E. D. Kirson, Y. Palti, Microbial growth inhibition by alternating electric fields in mice with pseudomonas aeruginosa lung infection. Antimicrob. Agents Chemother. 54(8), 3212–3218 (2010)

    Article  Google Scholar 

  • A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, S. Molin, Quantification of biofilm structures by the novel computer program Comstat. Microbiology 146(10), 2395–2407 (2000)

    Article  Google Scholar 

  • A. Huq, C. A. Whitehouse, C. J. Grim, M. Alam, R. R. Colwell, Biofilms in water, its role and impact in human disease transmission." current opinion in. Biotechnology 19(3), 244–247 (2008)

    Google Scholar 

  • W. Jun, M. S. Kim, B.-K. Cho, P. D. Millner, K. Chao, D. E. Chan, Microbial biofilm detection on food contact surfaces by macro-scale fluorescence imaging. J. Food Eng. 99(3), 314–322 (2010)

    Article  Google Scholar 

  • Y.W. Kim, M.P. Mosteller, M.T. Meyer, H. Ben-Yoav, W.E. Bentley and R. Ghodssi. Microfluidic biofilm observation, analysis, and treatment (Micro-Boat) Platform. Hilton Head Workshop 2012: A solid-state sensors, actuators and microsystems workshop, Hilton Head, SC (2012)

  • Y. W. Kim, S. Subramanian, K. Gerasopoulos, H. Ben-Yoav, H.-C. Wu, D. Quan, K. Carter, M. T. Meyer, W. E. Bentley, R. Ghodssi, Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect. Npj Biofilms Microbiomes 1, 15016 (2015)

    Article  Google Scholar 

  • Y. W. Kim, M. P. Mosteller, S. Subramanian, M. T. Meyer, W. E. Bentley, R. Ghodssi, An optical microfluidic platform for spatiotemporal biofilm treatment monitoring. J Micromech Microeng 26(1), 015013 (2016)

    Article  Google Scholar 

  • J.H. Merritt, D.E. Kadouri and G.A. O’Toole. Growing and analyzing static biofilms. Current protocols in microbiology, John Wiley & Sons, Inc. (2005)

  • M. T. Meyer, V. Roy, W. E. Bentley, R. Ghodssi, Development and validation of a microfluidic reactor for biofilm monitoring via optical methods. J Micromech Microeng 21(5), 054023 (2011)

    Article  Google Scholar 

  • M. T. Meyer, S. Subramanian, Y. W. Kim, H. Ben-Yoav, M. Gnerlich, W. E. Bentley, R. Ghodssi, Multi-depth Valved microfluidics for biofilm segmentation. J. icromech. Microeng. 25, 095003 (2015)

    Article  Google Scholar 

  • M. B. Miller, B. L. Bassler, Quorum sensing in bacteria." annual reviews in. Microbiology 55(1), 165–199 (2001)

    Article  Google Scholar 

  • G.A. O’Toole, L.A. Pratt, P.I. Watnick, D.K. Newman, V.B. Weaver and R. Kolter. Genetic approaches to study of biofilms. Methods in Enzymology. J.R. Doyle, Academic Press. 310: 91–109 (1999).

  • A. Pareilleux, N. Sicard, Lethal effects of electric current on Escherichia coli. Appl Microbiol 19(3), 421–424 (1970)

    Google Scholar 

  • J. Pozo, R. Patel, The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 82(2), 204–209 (2007)

    Article  Google Scholar 

  • D. N. Quan, W. E. Bentley, Gene network homology in prokaryotes using a similarity search approach: queries of quorum sensing signal transduction. PLoS Comput Biol 8(8), e1002637 (2012)

    Article  Google Scholar 

  • T. B. Rasmussen, M. Givskov, Quorum sensing inhibitors: a bargain of effects. Microbiology 152(4), 895–904 (2006a)

    Article  Google Scholar 

  • T. B. Rasmussen, M. Givskov, Quorum-sensing inhibitors as anti-pathogenic drugs. International Journal of Medical Microbiology 296(2–3), 149–161 (2006b)

    Article  Google Scholar 

  • B. W. Roberts, W. L. Olbricht, The distribution of freely suspended particles at microfluidic bifurcations. AICHE J. 52(1), 199–206 (2006)

    Article  Google Scholar 

  • V. Roy, R. Fernandes, C.-Y. Tsao, W. E. Bentley, Cross species quorum quenching using a native Ai-2 processing enzyme. ACS Chem. Biol. 5(2), 223–232 (2009)

    Article  Google Scholar 

  • V. Roy, J. A. Smith, J. Wang, J. E. Stewart, W. E. Bentley, H. O. Sintim, Synthetic analogs tailor native Ai-2 signaling across bacterial species. J. Am. Chem. Soc. 132(32), 11141–11150 (2010)

    Article  Google Scholar 

  • V. Roy, B. L. Adams, W. E. Bentley, Developing next generation antimicrobials by intercepting ai-2 mediated quorum sensing. Enzym Microb Technol 49(2), 113–123 (2011)

    Article  Google Scholar 

  • V. Roy, M. T. Meyer, J. A. I. Smith, S. Gamby, H. O. Sintim, R. Ghodssi, W. E. Bentley, Ai-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms. Appl. Microbiol. Biotechnol. 97(6), 2627–2638 (2013)

    Article  Google Scholar 

  • P. S. Stewart, W. Wattanakaroon, L. Goodrum, S. M. Fortun, B. R. McLeod, Electrolytic generation of oxygen partially explains electrical enhancement of tobramycin efficacy against pseudomonas aeruginosa biofilm. Antimicrob. Agents Chemother. 43(2), 292–296 (1999)

    Google Scholar 

  • P. Stoodley, D. DeBeer, H. M. Lappin-Scott, Influence of electric fields and Ph on biofilm structure as related to the bioelectric effect. Antimicrob. Agents Chemother. 41(9), 1876–1879 (1997)

    Google Scholar 

  • P. Stoodley, K. Sauer, D. Davies, J. W. Costerton, Biofilms as complex differentiated communities. annual reviews in. Microbiology 56(1), 187–209 (2002)

    Article  Google Scholar 

  • S. Subramanian, Y.W. Kim, M.T. Meyer, H.O. Sintim, W.E. Bentley and R. Ghodssi. A real-time bacterial biofilm characterization platform using a microfluidic system. Hilton Head Workshop 2014: A solid-state sensors, actuators and microsystems workshop, Hilton Head, SC (2014)

  • S. Subramanian, K. Gerasopoulos, H.O. Sintim, W.E. Bentley and R. Ghodssi. A bacterial biofilm combination treatment using a real-time microfluidic platform. The 18th international conference on solid-state sensors, actuators and microsystems (Transducers), Anchorage, AK (2015)

  • K. Toté, D. V. Berghe, L. Maes, P. Cos, A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Lett. Appl. Microbiol. 46(2), 249–254 (2008)

    Article  Google Scholar 

  • L. Wang, J. Li, J. C. March, J. J. Valdes, W. E. Bentley, Luxs-dependent Gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J. Bacteriol. 187(24), 8350–8360 (2005)

    Article  Google Scholar 

  • C. M. Waters, B. L. Bassler, Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005)

    Article  Google Scholar 

  • N. Wellman, S. M. Fortun, B. R. McLeod, Bacterial biofilms and the bioelectric effect. Antimicrob. Agents Chemother. 40(9), 2012–2014 (1996)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Robert W. Deutsch Foundation, the Centers of Excellence in Regulatory Science and Innovation (CERSI) at the Food and Drug Administration (FDA) and NSF (CBET 1264509) for their financial support. The authors would also like to thank the Maryland Nanocenter and its FabLab staff. Finally, the authors thank Drs. Young Wook Kim and Mariana Meyer for their useful consulting on biofilm growth experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sowmya Subramanian or Reza Ghodssi.

Electronic supplementary material

ESM 1

(DOCX 1651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, S., Gerasopoulos, K., Guo, M. et al. Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment. Biomed Microdevices 18, 95 (2016). https://doi.org/10.1007/s10544-016-0120-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0120-9

Keywords

Navigation