Skip to main content
Log in

Mean-square convergence rates of stochastic theta methods for SDEs under a coupled monotonicity condition

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The present article revisits the well-known stochastic theta methods (STMs) for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. Under a coupled monotonicity condition in a domain \(D \subset {{\mathbb {R}}}^d, d \in {{\mathbb {N}}}\), we propose a novel approach to achieve upper mean-square error bounds for STMs with the method parameters \(\theta \in [\tfrac{1}{2}, 1]\), which only get involved with the exact solution processes. This enables us to easily recover mean-square convergence rates of the considered schemes, without requiring a priori high-order moment estimates of numerical approximations. As applications of the error bounds, we derive mean-square convergence rates of STMs for SDEs driven by three kinds of noises under further globally polynomial growth condition. In particular, the error bounds are utilized to analyze approximation of SDEs with small noise. It is shown that the stochastic trapezoid formula gives better convergence performance than the other STMs. Furthermore, we apply STMs to the Ait-Sahalia-type interest rate model taking values in the domain \(D = ( 0, \infty )\), and successfully identify a convergence rate of order one-half for STMs with \(\theta \in [\tfrac{1}{2}, 1]\), even in a general critical case. This fills the gap left by Szpruch et al. (BIT Numer Math 51(2):405–425, 2011), where strong convergence of the backward Euler method was proved, without revealing a rate of convergence, for the model in a non-critical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ait-Sahalia, Y.: Testing continuous-time models of the spot interest rate. Rev. Financ. Stud. 9(2), 385–426 (1996)

    Google Scholar 

  2. Alfonsi, A.: Strong order one convergence of a drift implicit Euler scheme: application to the cir process. Stat. Probab. Lett. 83(2), 602–607 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Anderson, D.F., Higham, D.J., Sun, Y.: Multilevel Monte Carlo for stochastic differential equations with small noise. SIAM J. Numer. Anal. 54(2), 505–529 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Andersson, A., Kruse, R.: Mean-square convergence of the BDF2-Maruyama and backward Euler schemes for SDE satisfying a global monotonicity condition. BIT Numer. Math. 57(1), 21–53 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Beyn, W.-J., Isaak, E., Kruse, R.: Stochastic C-stability and B-consistency of explicit and implicit Euler-type schemes. J. Sci. Comput. 67(3), 955–987 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Beyn, W.-J., Kruse, R.: Two-sided error estimates for the stochastic theta method. Discret. Contin. Dyn. Syst. Ser. B 14(2), 389–407 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Bryden, A., Higham, D.J.: On the boundedness of asymptotic stability regions for the stochastic theta method. BIT Numer. Math. 43(1), 1–6 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Buckwar, E., Rößler, A., Winkler, R.: Stochastic Runge–Kutta methods for itô SODEs with small noise. SIAM J. Sci. Comput. 32(4), 1789–1808 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Buckwar, E., Winkler, R.: Multistep methods for SDEs and their application to problems with small noise. SIAM J. Numer. Anal. 44(2), 779–803 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Chassagneux, J., Jacquier, A., Mihaylov, I.: An explicit Euler scheme with strong rate of convergence for financial SDEs with non-lipschitz coefficients. SIAM J. Financ. Math. 7(1), 993–1021 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Fang, W., Giles, M.B.: Adaptive Euler-Maruyama method for SDEs with non-globally lipschitz drift: Part i, finite time interval. arXiv preprint arXiv:1609.08101 (2016)

  12. Higham, D.J.: Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal. 38(3), 753–769 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40(3), 1041–1063 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Higham, D.J., Mao, X., Stuart, A.M.: Exponential mean-square stability of numerical solutions to stochastic differential equations. LMS J. Comput. Math. 6, 297–313 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Huang, C.: Exponential mean square stability of numerical methods for systems of stochastic differential equations. J. Comput. Appl. Math. 236(16), 4016–4026 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Hutzenthaler, M., Jentzen, A.: Numerical approximation of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Am. Math. Soc. 236, 1112 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Hutzenthaler, M., Jentzen, A., Wang, X.: Exponential integrability properties of numerical approximation processes for nonlinear stochastic differential equations. Math. Comput. 87(311), 1353–1413 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Kelly, C., Lord, G.J.: Adaptive time-stepping strategies for nonlinear stochastic systems. IMA J. Numer. Anal. 38(3), 1523–1549 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, vol. 23. Springer, Berlin (1992)

    MATH  Google Scholar 

  22. Li, T., Abdulle, A.: Effectiveness of implicit methods for stiff stochastic differential equations. Commun. Comput. Phys. 3, 295–307 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Li, X., Mao, X., Yin, G.: Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in pth moment and stability. IMA J. Numer. Anal. 39, 847–892 (2019)

    MathSciNet  Google Scholar 

  24. Mao, X.: The truncated Euler-Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 290, 370–384 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Mao, X.: Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 296, 362–375 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Mao, X., Szpruch, L.: Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Comput. Appl. Math. 238, 14–28 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Mao, X., Szpruch, L.: Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients. Stoch. Int. J. Probab. Stoch. Process. 85(1), 144–171 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Milstein, G., Tretyakov, M.V.: Mean-square numerical methods for stochastic differential equations with small noises. SIAM J. Sci. Comput. 18(4), 1067–1087 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2013)

    MATH  Google Scholar 

  30. Neuenkirch, A., Szpruch, L.: First order strong approximations of scalar sdes defined in a domain. Numerische Mathematik 128(1), 103–136 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Römisch, W., Winkler, R.: Stepsize control for mean-square numerical methods for stochastic differential equations with small noise. SIAM J. Sci. Comput. 28(2), 604–625 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Sabanis, S.: A note on tamed Euler approximations. Electron. Commun. Probab. 18(47), 1–10 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Sabanis, S.: Euler approximations with varying coefficients: the case of super-linearly growing diffusion coefficients. Ann. Appl. Probab. 26(4), 2083–2105 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Szpruch, L., Mao, X., Higham, D.J., Pan, J.: Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model. BIT Numer. Math. 51(2), 405–425 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Szpruch, L., Zhang, X.: V-integrability, asymptotic stability and comparison property of explicit numerical schemes for non-linear SDEs. Math. Comput. 87(310), 755–783 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Tretyakov, M.V., Zhang, Z.: A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications. SIAM J. Numer. Anal. 51(6), 3135–3162 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Wang, X., Gan, S.: The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Differ. Equ. Appl. 19(3), 466–490 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Wang, X.: Mean-square convergence rates of implicit Milstein type methods for SDEs with non-Lipschitz coefficients: applications to financial models. Submitted for publication (2020)

  39. Zhang, Z., Ma, H.: Order-preserving strong schemes for SDEs with locally Lipschitz coefficients. Appl. Numer. Math. 112, 1–16 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Zong, X., Wu, F.: Choice of \(\theta \) and mean-square exponential stability in the stochastic theta method of stochastic differential equations. J. Comput. Appl. Math. 255, 837–847 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojie Wang.

Additional information

Communicated by David Cohen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSF of China (11671405, 11971488, 11571373, 91630312, 11561028, 11801238), Innovation Program of Central South University (No. 2017CX017), and Program of Shenghua Yuying at Central South University. We would like to thank the two referees for their helpful comments, which are crucial to the improvements of the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wu, J. & Dong, B. Mean-square convergence rates of stochastic theta methods for SDEs under a coupled monotonicity condition. Bit Numer Math 60, 759–790 (2020). https://doi.org/10.1007/s10543-019-00793-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00793-0

Keywords

Mathematics Subject Classification

Navigation