Skip to main content
Log in

Mean-square convergence rates of implicit Milstein type methods for SDEs with non-Lipschitz coefficients

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

A Correction to this article was published on 20 June 2023

This article has been updated

Abstract

A class of implicit Milstein type methods is introduced and analyzed in the present article for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. By incorporating a pair of method parameters \(\theta , \eta \in [0, 1]\) into both the drift and diffusion parts, the new schemes are indeed a kind of drift-diffusion double implicit methods. Within a general framework, we offer upper mean-square error bounds for the proposed schemes, based on certain error terms only getting involved with the exact solution processes. Such error bounds help us to easily analyze mean-square convergence rates of the schemes, without relying on a priori high-order moment estimates of numerical approximations. Putting further globally polynomial growth condition, we successfully recover the expected mean-square convergence rate of order one for the considered schemes with \(\theta \in [\tfrac{1}{2}, 1], \eta \in [0, 1]\). Also, some of the proposed schemes are applied to solve three SDE models evolving in the positive domain \((0, \infty )\). More specifically, the particular drift-diffusion implicit Milstein method (\( \theta = \eta = 1 \)) is utilized to approximate the Heston \(\frac{3}{2}\)-volatility model and the stochastic Lotka-Volterra competition model. The semi-implicit Milstein method (\(\theta =1, \eta = 0\)) is used to solve the Ait-Sahalia interest rate model. Thanks to the previously obtained error bounds, we reveal the optimal mean-square convergence rate of the positivity preserving schemes under more relaxed conditions, compared with existing relevant results in the literature. Numerical examples are also reported to confirm the previous findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Ait-Sahalia, Y.: Testing continuous-time models of the spot interest rate. The Review of Financial Studies 9(2), 385–426 (1996)

    Article  Google Scholar 

  2. Alfonsi, A.: Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process. Statistics & Probability Letters 83(2), 602–607 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersson, A., Kruse, R.: Mean-square convergence of the BDF2-Maruyama and backward Euler schemes for SDE satisfying a global monotonicity condition. BIT Numerical Mathematics 57(1), 21–53 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beyn, W.-J., Isaak, E., Kruse, R.: Stochastic C-stability and B-consistency of explicit and implicit Euler-type schemes. Journal of Scientific Computing 67(3), 955–987 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beyn, W.-J., Isaak, E., Kruse, R.: Stochastic C-stability and B-consistency of explicit and implicit Milstein-type schemes. Journal of Scientific Computing 70(3), 1042–1077 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bossy, M., Quinteros, H.O.: Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs. Bernoulli 24(3), 1995–2042 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Buckwar, E., Sickenberger, T.: A comparative linear mean-square stability analysis of Maruyama- and Milstein-type methods. Mathematics & Computers in Simulation 81(6), 1110–1127 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kahl, C., Gunther, M., Rosberg, T.: Structure preserving stochastic integration schemes in interest rate derivative modeling. Applied Numerical Mathematics 58, 284–295 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chassagneux, J., Jacquier, A., Mihaylov, I.: An explicit Euler scheme with strong rate of convergence for financial SDEs with non-lipschitz coefficients. SIAM Journal on Financial Mathematics 7(1), 993–1021 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cui, J., Hong, J., and Sheng, D. (2019) Convergence in density of splitting AVF scheme for stochastic Langevin equation. arXiv:1906.03439

  11. Ahn, D.H., Gao, B.: A parametric nonlinear model of term structure dynamics. Review of Financial Studies 12, 721 (1999)

    Article  Google Scholar 

  12. Fang, W., Giles, M.B.: Adaptive Euler-Maruyama method for SDEs with nonglobally Lipschitz drift. Ann. Appl. Probab. 30(2), 526–560 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gan, S., He, Y., Wang, X.: Tamed Runge-Kutta methods for SDEs with super-linearly growing drift and diffusion coefficients. Appl. Numer. Math. 152, 379–402 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giles, M.B.: Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg (2008)

  15. Giles, M.: Multilevel monte carlo path simulation. Oper. Res. 56, 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giles, M., Debrabant, K., Rößler A.: Analysis of multilevel monte carlo path simulation using the milstein discretisation. Discrete Cont Dyn-B, 24(8), 3881–3903 (2019)

  17. Gilsing, H., Shardlow, T.: Sdelab: A package for solving stochastic differential equations in matlab. Journal of Computational and Applied Mathematics 205(2), 1002–1018 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, Q., Liu, W., Mao, X., Yue, R.: The truncated Milstein method for stochastic differential equations with commutative noise. Journal of Computational and Applied Mathematics 338, 298–310 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heston, S.: A simple new formula for options with stochastic volatility. Course Notes of Washington University in St, Louis, Missouri (1997)

    Google Scholar 

  20. Higham, D.J., Mao, X., Stuar, A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM Journal on Numerical Analysis 40(3), 1041–1063 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Higham, D.J., Mao, X., Szpruch, L.: Convergence, non-negativity and stability of a new Milstein scheme with applications to finance. Discrete & Continuous Dynamical Systems-Series B 18(8), 2083–2100 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, Y.: Semi-implicit euler-maruyama scheme for stiff stochastic equations. in Stochastic Analysis and Related Topics V: The Silvri Workshop. Progr. Probab. 38, 183–202 (1996)

    Google Scholar 

  23. Hutzenthaler, M. and Jentzen, A. (2015) Numerical approximation of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Amer. Math. Soc., 236(1112)

  24. Hutzenthaler, M., Jentzen, A.: On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients. Ann. Probab. 48(1), 53–93 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 467(2130), 1563–1576 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hutzenthaler, M., Jentzen, A., Wang, X.: Exponential integrability properties of numerical approximation processes for nonlinear stochastic differential equations. Math. Comput. 87(311), 1353–1413 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kelly, C., Lord, G., and Sun, F. (2019) Strong convergence of an adaptive time-stepping Milstein method for SDEs with one-sided Lipschitz drift. arXiv:1909.00099

  29. Kelly, C., Lord, G.J.: Adaptive time-stepping strategies for nonlinear stochastic systems. IMA Journal of Numerical Analysis 38(3), 1523–1549 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kloeden, P.E., and Platen, E. (1992) Numerical solution of stochastic differential equations, vol 23. Springer Science & Business Media

  31. Kruse, R., Wu, Y.: A randomized Milstein method for stochastic differential equations with non-differentiable drift coefficients. Discrete & Continuous Dynamical Systems-B 24(8), 3475–3502 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kumar, C., Sabanis, S.: On Milstein approximations with varying coefficients: the case of super-linear diffusion coefficients. BIT Numerical Mathematics 59(4), 929–968 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lewis, A.L., (2000) Option valuation under stochastic volatility. Finance Press

  34. Li, X., Yin, G.: Explicit Milstein schemes with truncation for nonlinear stochastic differential equations: convergence and its rate. J. Comput. Appl. Math. 374, 112771 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, Z., Qiao, Z.: Strong approximation of monotone stochastic partial differential equations driven by multiplicative noise. Stochastics and Partial Differential Equations: Analysis and Computations 9(3), 559–602 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Majee, A.K., Prohl, A.: Optimal strong rates of convergence for a space-time discretization of the stochastic allen-cahn equation with multiplicative noise. Computational Methods in Applied Mathematics 18(2), 297–311 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mao, X.: The truncated Euler-Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 290, 370–384 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mao, X.: Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 296, 362–375 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mao, X., Szpruch, L.: Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Comput. Appl. Math. 238, 14–28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mao, X., Szpruch, L.: Strong convergence rates for backward Euler-Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients. Stochastics An International Journal of Probability and Stochastic Processes 85(1), 144–171 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mao, X., Wei, F., Wiriyakraikul, T.: Positivity preserving truncated euler-maruyama method for stochastic lotka-volterra competition model. Journal of Computational and Applied Mathematics 394, 113566 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Milstein, G.N., Platen, E., Schurz, H.: Balanced implicit methods for stiff stochastic systems. SIAM J. Numer. Anal. 35(3), 1010–1019 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Milstein, G.N., and Tretyakov, M.V. (2013) Stochastic numerics for mathematical physics. Springer Science & Business Media

  44. Neuenkirch, A., Szpruch, L.: First order strong approximations of scalar sdes defined in a domain. Numerische Mathematik 128(1), 103–136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rößler, A.: Runge-kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM J. Numer. Anal. 48(3), 922–952 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sabanis, S.: A note on tamed Euler approximations. Electron. Commun. Probab 18(47), 1–10 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Sabanis, S.: Euler approximations with varying coefficients: the case of super-linearly growing diffusion coefficients. Ann. Appl. Probab. 26(4), 2083–2105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Szpruch, L., Mao, X., Higham, D.J., Pan, J.: Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model. BIT Numerical Mathematics 51(2), 405–425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Szpruch, L., Zhang, X.: V-integrability, asymptotic stability and comparison property of explicit numerical schemes for non-linear SDEs. Math. Comput. 87(310), 755–783 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tretyakov, M.V., Zhang, Z.: A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications. SIAM J. Numer. Anal. 51(6), 3135–3162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, X., Gan, S.: The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients. Journal of Difference Equations and Applications 19(3), 466–490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, X., Wu, J., Dong, B.: Mean-square convergence rates of stochastic theta methods for SDEs under a coupled monotonicity condition. BIT Numer. Math. 60(3), 759–790 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang, X., Gan, S., Wang, D.: A family of fully implicit milstein methods for stiff stochastic differential equations with multiplicative noise. BIT Numer. Math. 52(3), 741–772 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wiktorsson, M.: Joint characteristic function and simultaneous simulation of iterated itô integrals for multiple independent brownian motions. The Annals of Applied Probability 11(2), 470–487 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yao, J., Gan, S.: Stability of the drift-implicit and double-implicit milstein schemes for nonlinear sdes. Appl. Math. Comput. 339, 294–301 (2018)

    MathSciNet  MATH  Google Scholar 

  56. Zhang, Z., Ma., H.: Order-preserving strong schemes for SDEs with locally Lipschitz coefficients. Appl. Numer. Math. 112, 1–16 (2017)

  57. Zong, X., Wu, F., Xu, G.: Convergence and stability of two classes of theta-Milstein schemes for stochastic differential equations. J. Comput. Appl. Math. 336, 8–29 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of China (12071488, 11971488) and Natural Science Foundation of Hunan Province for Distinguished Young Scholars (2020JJ2040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojie Wang.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Communicated by: Ivan Oseledets

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: the affiliation detail for Xiaojie Wang was incorrectly given as “School of Mathematics and Statistics, HNP-LAMA Institute for Metal Physics, National Academy of Sciences” but should have been “School of Mathematics and Statistics, HNP-LAMA, Central South University”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X. Mean-square convergence rates of implicit Milstein type methods for SDEs with non-Lipschitz coefficients. Adv Comput Math 49, 37 (2023). https://doi.org/10.1007/s10444-023-10034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10034-2

Keywords

Mathematics Subject Classification (2010)

Navigation