Skip to main content
Log in

Effects of salt and alkali stress on growth, accumulation of oxalic acid, and activity of oxalic acid-metabolizing enzymes in Kochia sieversiana

  • Original Paper
  • Published:
Biologia Plantarum

Abstract

Kochia sieversiana (Pall.) C.A. Mey. is a forage plant that can grow in extremely alkalinized grasslands at pH 10 or higher. Accumulation of a large amount of oxalic acid (OxA) is a primary characteristic of K. sieversiana. In our study, seedlings of K. sieversiana were exposed to the following conditions: non-stress, salinity (200 mM, a molar ratio of NaCl and Na2SO4 1:1), and alkali stress (200 mM, a molar ratio of NaHCO3 and Na2CO3 1:1). Growth, water content, content of organic acids (including OxA), Na+, and K+, and activities of some OxA metabolism-related enzymes were determined. Results show that glycolate oxidase was the key enzyme for OxA synthesis; however, the carboxylation of phosphoenolpyruvate (PEP) by PEP carboxylase (PEPC) probably played a minor role in the OxA-synthetic pathway. The pathway of L-ascorbic acid catabolism was not the main source of OxA accumulation, and the activity of oxalate oxidase (OxO) involved in OxA decomposition was not a limiting factor for inner OxA accumulation. Taken together, accumulation of a large amount of OxA are not related to the degradation and secretion function of OxO but largely depend upon its synthetic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GO:

glycolate oxidase

ICL:

isocitrate lyase

L-AA:

L-ascorbic acid

OA:

organic acid

OxA:

oxalic acid

OxO:

oxalate oxidase

PEPC:

phosphoenolpyruvate carboxylase

References

  • Berna, A., Bernier, F.: Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. — Plant mol. Biol. 39: 539–549, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Booker, F.L., Reid, C.D., Brunschön-Harti, S., Fiscus, E.L., Miller, J.E.: Photosynthesis and photorespiration in soybean [Glycine max (L.) Merr.] chronically exposed to elevated carbon dioxide and ozone. — J. exp. Bot. 48: 1843–1852, 1997.

    Article  CAS  Google Scholar 

  • Bouthour, D., Hajjaji-Nasraoui, A., Saafi, L., Gouia, H., Chaffei-Haouari, C.: Effects of NaCl on growth and activity of enzymes involved in carbon metabolism in leaves of tobacco (Nicotiana rustica). — Afr. J. Biotechnol. 63: 12619–12629, 2012.

    Google Scholar 

  • Brock, M., Darley, D., Textor, S., Buckel, W.: 2-Methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulansS: characterization and comparison of both enzymes. - Eur. J. Biochem. 268: 3577–3586, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Burrows, G.E., Tyrl, R.J.: Chenopodiaceae Vent. - In: Burrows, G.E., Tyrl, R.J. (ed.): Toxic Plants of North America. Pp. 338–364. John Wiley and Sons, New York 2012.

    Chapter  Google Scholar 

  • Cassol, D., Cambraia, J., Ribeiro, C., Oliveira, J.A., Cardoso, F.B.: Citric acid secretion induced by aluminium in two Stylosanthes species. — Biol. Plant. 60: 572–578, 2016.

    Article  CAS  Google Scholar 

  • Chakraborty, N., Ghosh, R., Ghosh, S., Narula, K., Tayal, R., Datta, A., Chakraborty, S.: Reduction of oxalate levels in tomato fruit and consequent metabolic remodeling following overexpression of a fungal oxalate decarboxylase. — Plant Physiol. 162: 364–378, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, C.C., Beevers, H.: Biogenesis of oxalate in plant tissues. — Plant Physiol. 43: 1821–1828, 1968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Geng, H.C., Wang, S.S., Ding, M.L., Chen, X.J., Chen, J.Y.: [Formation, degeneration and functions of oxalate in plant.] - Mol. Plant Breed. 6: 105–110, 2007. [In Chin.]

    Google Scholar 

  • Davey, M.W., Van, Montagu, M.V., Inzé, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I.J.J., Strain, J.J., Favell, D., Fletcher, J.: Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. — J. Sci. Food Agr. 80: 825–860, 2000.

    Article  CAS  Google Scholar 

  • Davies, D.D., Asker, H.: Synthesis of oxalic acid by enzymes from lettuce leaves. — Plant Physiol. 72: 134–138, 1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debolt, S., Melino, V., Ford, C.M.: Ascorbate as a biosynthetic precursor in plants. — Ann. Bot. 99: 3–8, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Franceschi, V.R., Horner, H.T.: Calcium oxalate crystals in plants. — Bot. Rev. 46: 361–427, 1980.

    Article  CAS  Google Scholar 

  • Franceschi, V.R., Nakata, P.A.: Calcium oxalate in plants: formation and function. — Annu. Rev. Plant Biol. 56: 41–71, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Guo, R., Shi, L.X., Yang, Y.F.: Germination, growth, osmotic adjustment and ionic balance of wheat in response to saline and alkaline stresses. -Soil Sci. Plant Nutr. 55: 667–679, 2009.

    Article  CAS  Google Scholar 

  • Hassan, M.J., Shafi, M., Zhang, G.P., Zhu, Z.J., Qaisar, M.: The growth and some physiological responses of rice to Cd toxicity as affected by nitrogen form. — Plant Growth Regul. 54: 125–132, 2008.

    Article  CAS  Google Scholar 

  • Hurkman, W.J., Tanaka, C.K.: Effect of salt stress on Germin gene expression in barley roots. — Plant Physiol. 110: 971–977, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazumi, S., Frank, A., Loewus, F.A.: Conversion of Dglucosone to oxalic acid and L- (+) -tartaric acid in detached leaves of pelargonium. — Phytochemistry 31: 3341–3344, 1992.

    Article  Google Scholar 

  • Kostman, T.A., Tarlyn, N.M., Loewus, F.A., Francecschi, V.R.: Biosynthesis of L-ascorbic acid and conversion of carbons 1 and 2 of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. — Plant Physiol. 125: 634–640, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane, B.G., Dunwell, J.M., Ray, J.A., Schmitt, M.R., Cuming, A.C.: Germin, a protein marker of early plant development, is an oxalate oxidase. — J. biol. Chem. 268: 12239–12242, 1993.

    CAS  PubMed  Google Scholar 

  • Libert, B., Franceschi, V.R.: Oxalate in crop plants. — J. Agr. Food Chem. 35: 926–938, 1987.

    Article  CAS  Google Scholar 

  • Lissner, J., Schierup, H., Comin, F.A., Astorga, V.: Effect of climate on the salt tolerance of two Phragmites australis populations. — I. Growth, inorganic solutes, nitrogen relations and osmoregulation. - Aquat. Bot. 64: 317–333, 1999.

    Article  CAS  Google Scholar 

  • Ma, J.F., Zheng, S.J., Matsumoto, H., Hiradate, S.: Detoxifying aluminum with buckwheat. — Nature 390: 569–570, 1997.

    Article  Google Scholar 

  • Ma, Y., Guo, L.Q., Wang, H.X., Bai, B., Shi, D.C.: Accumulation, distribution, and physiological contribution of oxalic acid and other solutes in an alkali-resistant forage plant, Kochia sieversiana, during adaptation to saline and alkaline conditions. — J. Plant Nutr. Soil Sci. 174: 655–663, 2011.

    Article  CAS  Google Scholar 

  • Ma, Z., Miyasaka, S.C.: Oxalate exudation by taro in response to Al. — Plant Physiol. 118: 861–865, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazen, A.M.A.: Calcium oxalate deposits in leaves of Corchorus olitorius as related to accumulation of toxic metals. — Russ. J. Plant Physiol. 51: 281–285, 2004.

    Article  CAS  Google Scholar 

  • Millerd, A., Morton, R.K., Wells, J.R.E.: Role of isocitrate lyase in synthesis of oxalic acid in plants. — Nature 196: 955–956, 1962.

    Article  CAS  Google Scholar 

  • Nakata, P.A.: Advances in our understanding of calcium oxalate crystal formation and function in plants. — Plant Sci. 164: 901–909, 2003.

    Article  CAS  Google Scholar 

  • Naliwajski, M.R., Sklodowska, M.: The oxidative stress and antioxidant systems in cucumber cells during acclimation to salinity. — J. Plant Physiol. 58: 47–54, 2014.

    CAS  Google Scholar 

  • Raven, J.A.: H+ and Ca2+ in phloem and symplast: relation of relative immobility of the ions to the cytoplasmic nature of the transport paths. — New Phytol. 79: 465–480, 1977.

    Article  CAS  Google Scholar 

  • Reid, R.J., Smith, F.A.: The cytoplasmic pH state. - In: Rengel Z. (ed.): Handbook of Plant Growth - pH as the Master Variable. Pp. 49–71. Marcel Dekker, New York 2001.

    Google Scholar 

  • Thakur, M., Goyal, L., Pundir, C.S.: Discrete analysis of plasma oxalate with alkylamine glass bound sorghum oxalate oxidase and horseradish peroxidase. — J. biochem. biophys. Methods 44: 77–88, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Tian, H., Jiang, L.R., Liu, E., Zhang, J.J., Liu, F., Peng, X.X.: Dependence of nitrate-induced oxalate accumulation on nitrate reduction in rice leaves. — Physiol. Plant. 133: 180–18, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G.Y., Yang, X.L., Tian, L.X.: Determination of total ascorbic acid in fruits, vegetables and derived products - flourometric method and colorimetric method. - In: Wang, G.Y., Yang, X.L., Tian, L.X. (ed.): National Standards of the People's Republic of China. Pp. 1–6. China Standards Press, Beijing 2004.

    Google Scholar 

  • Xu, H.W., Ji, X.M., He, Z.H., Shi, W.P., Zhu, G.H., Niu, J.K., Li, B.S., Peng, X.X.: Oxalate accumulation and regulation is independent of glycolate oxidase in rice leaves. — J. exp. Bot. 57: 1899–1908, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Xu, L.H., Wang, W.Y., Guo, J.J., Qin, J., Shi, D.Q., Li, Y.L., Xu, J.: Zinc improves salt tolerance by increasing reactive oxygen species scavenging and reducing Na+ accumulation in wheat seedlings. — J. Plant Physiol. 58: 751–757, 2014.

    CAS  Google Scholar 

  • Yang, C.W., Shi, D.C., Wang, D.L.: Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyte Suaeda glauca (Bge.). — Plant Growth Regul. 56: 179–190, 2008.

    Article  CAS  Google Scholar 

  • Yang, Y.Y., Jung, J.Y., Song, W.Y., Suh, H.S., Lee, Y.S.: Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. — Plant Physiol. 124: 1019–1026, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Z.M., Yang, H., Wang, J., Wang, Y.S.: Aluminum regulation of citrate metabolism for Al-induced citrate efflux in the roots of Cassia tora L. - Plant Sci. 166:1589–1594, 2004.

    Article  CAS  Google Scholar 

  • Zhai, Y.J., Feng, X.H., Kang, Y.G.: [Pharmacognostical identification of fructus Kochia sieversiana.] - J. Chin. Med. Mater. 6: 283–285, 1996. [In Chin.]

    Google Scholar 

  • Zhang, L., Wang, Z., Xia, Y., Guo, Y.K., Chen, W.S., Tang, K.X.: Metabolic engineering of plant L-ascorbic acid biosynthesis: recent trends and applications. — Crit. Rev. Biotechnol. 27: 173–182, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. X. Sheng.

Additional information

Acknowledgements: We thank the International Science Editing (ISE) for language editing. This work was supported by the open fund from National Key Laboratory of Northeast Normal University (130028691).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Wang, X.P., Zhang, S.F. et al. Effects of salt and alkali stress on growth, accumulation of oxalic acid, and activity of oxalic acid-metabolizing enzymes in Kochia sieversiana . Biol Plant 60, 774–782 (2016). https://doi.org/10.1007/s10535-016-0650-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0650-2

Additional key words

Navigation