Skip to main content

Advertisement

Log in

Modeling total particulate organic carbon (POC) flows in the Baltic Sea catchment

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The largest input source of carbon to the Baltic Sea catchment is river discharge. A tool for modeling riverine particulate organic carbon (POC) loads on a catchment scale is currently lacking. The present study describes a novel dynamic model for simulating flows of POC in all major rivers draining the Baltic Sea catchment. The processes governing POC input and transport in rivers described in the model are soil erosion, in-stream primary production and litter input. The Baltic Sea drainage basin is divided into 82 sub-basins, each comprising several land classes (e.g. forest, cultivated land, urban areas) and parameterized using GIS data on soil characteristics and topography. Driving forces are temperature, precipitation, and total phosphorous concentrations. The model evaluation shows that the model can predict annual average POC concentrations within a factor of about 2, but generally fails to capture the timing of monthly peak loads. The total annual POC load to the Baltic Sea is estimated to be 0.34 Tg POC, which constitutes circa 7–10 % of the annual total organic carbon (TOC) load. The current lack of field measurements of POC in rivers hampers more accurate predictions of seasonality in POC loads to the Baltic Sea. This study, however, identifies important knowledge gaps and provides a starting point for further explorations of large scale POC mass flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Algesten G, Sobek S, Bergström AK, Ågren A, Tranvik LJ, Jansson M (2004) Role of lakes for organic carbon cycling in the boreal zone. Glob Change Biol 10(1):141–147

    Article  Google Scholar 

  • Allan DJ, Castillo MM (2007) Stream ecology structure and function of running waters. Springer, Dordrecht

    Book  Google Scholar 

  • Alling V, Humborg C, Mörth C-M, Rahm L, Pollehne F (2008) Tracing terrestrial organic matter by δ34S and δ13C signatures in a subarctic estuary. Limnol Oceanogr 53(6):2594–2602

    Article  Google Scholar 

  • Alvarez-Cobelas M, Angeler D, Sánchez-Carrillo S, Almendros G (2012) A worldwide view of organic carbon export from catchments. Biogeochemistry 107(1–3):275–293

    Article  Google Scholar 

  • Andersson A (1998) Particle transport in the Kalix river and in the Baltic Sea. Geochim Cosmochim 62(3):385–392

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrological modeling and assessment part 1: model development. JAWRA J Am Water Resour Assoc 34(1):73–89

    Article  Google Scholar 

  • Bakker MM, Govers G, van Doorn A, Quetier F, Chouvardas D, Rounsevell M (2008) The response of soil erosion and sediment export to land-use change in four areas of Europe: the importance of landscape pattern. Geomorphology 98(3–4):213–226

    Article  Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1(2):95–100

    Article  Google Scholar 

  • Bergknut M, Laudon H, Wiberg K (2010) Dioxins, PCBs, and HCB in soil and peat profiles from a pristine boreal catchment. Environ Pollut 158(7):2518–2525

    Article  Google Scholar 

  • Berglund O (2003) Periphyton density influences organochlorine accumulation in rivers. Limnol Oceanogr 48(6):2106–2116

    Article  Google Scholar 

  • Blair NE, Leithold EL, Aller RC (2004) From bedrock to burial: the evolution of particulate organic carbon across coupled watershed-continental margin systems. Mar Chem 92(1–4):141–156

    Article  Google Scholar 

  • Cloern JE, Grenz C, Vidergar-Lucas L (1995) An empirical model of the phytoplankton chlorophyll: carbon ratio-the conversion factor between productivity and growth rate. Limnol Oceanogr 40(7):1313–1321

    Article  Google Scholar 

  • Cloern J, Foster S, Kleckner A (2014) Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11(9):2477–2501

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating Inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–185

    Article  Google Scholar 

  • Committee on Flux of Organic Carbon to the Ocean (1981) Flux of organic carbon by rivers to the oceans, Workshop, Woods Hole, Massachusetts, Sept. 21–25. In: vol NTIS Report no. CONF-8009140, VC-11. Springfield

  • Conners ME, Naiman RJ (1984) Particulate Allochthonous Inputs: relationships with stream size in an undisturbed watershed. Can J Fish Aquat Sci 41(10):1473–1484

    Article  Google Scholar 

  • Cummins KW (1974) Structure and function of stream ecosystems. Oxford Univ Press 24(11):631–641

    Google Scholar 

  • Dachs J, Eisenreich SJ, Baker JE, Ko F-C, Jeremiason JD (1999) Coupling of phytoplankton uptake and air-water exchange of persistent organic pollutants. Environ Sci Technol 33(20):3653–3660

    Article  Google Scholar 

  • de Vente J, Poesen J (2005) Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-Sci Rev 71(1–2):95–125

    Article  Google Scholar 

  • EEA (2013) Chlorophyll in transitional, coastal and marine waters (CSI 023) In: vol 3/6

  • Fitzgerald SA, Steuer JJ (2006) Association of polychlorinated biphenyls (PCBs) with live algae and total lipids in rivers—a field-based approach. Sci Total Environ 354(1):60–74

    Article  Google Scholar 

  • Fleming-Lehtinen V, Räike A, Kortelainen P, Kauppila P, Thomas DN (2014) Organic carbon concentration in the northern coastal Baltic Sea between 1975 and 2011. Estuar Coast 38(2):466–481

    Article  Google Scholar 

  • Ford WI, Fox JF (2014) Model of particulate organic carbon transport in an agriculturally impacted stream. Hydrol Process 28(3):662–675

    Article  Google Scholar 

  • Garnier J, Billen G, Coste M (1995) Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: observations and modeling. Limnol Oceanogr 40(4):750–765

    Article  Google Scholar 

  • Geider RJ (1987) Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol 106:1–34

    Article  Google Scholar 

  • Gustafsson E, Deutsch B, Gustafsson BG, Humborg C, Mörth CM (2014) Carbon cycling in the Baltic Sea—the fate of allochthonous organic carbon and its impact on air–sea CO2 exchange. J Mar Syst 129:289–302

    Article  Google Scholar 

  • Hagen EM, McTammany ME, Webster JR, Benfield EF (2010) Shifts in allochthonous input and autochthonous production in streams along an agricultural land-use gradient. Hydrobiologia 655(1):61–77

    Article  Google Scholar 

  • Helcom (2013) Climate change in the Baltic Sea Area HELCOM thematic assessment in 2013. In: Comission H, Comission BSEP (eds) Baltic Sea environment proceedings

  • Helsinki Commission H (1986) Baltic Marine Environment Protection Commission. In: Baltic Sea environment proceedings No. 16, p 174

  • Hickey R (2000) Slope angle and slope length solutions for GIS. Cartography 29(1):1–8

    Article  Google Scholar 

  • Hope D, Billett M, Cresser M (1994) A review of the export of carbon in river water: fluxes and processes. Environ Pollut 84(3):301–324

    Article  Google Scholar 

  • Howarth RW, Fruci JR, Sherman D (1991) Inputs of sediment and carbon to an estuarine ecosystem: influence of land use. Ecol Appl 1:27–39

    Article  Google Scholar 

  • IPCC (2014) Climate Change 2014: mitigation of climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge

  • Jonsson A, Karlsson J, Jansson M (2003) Sources of carbon dioxide supersaturation in clearwater and humic lakes in northern Sweden. Ecosystems 6(3):224–235

    Article  Google Scholar 

  • Kochi K, Yanai S, Nagasaka A (2004) Energy input from a riparian forest into a headwater stream in Hokkaido, Japan. Arch Hydrobiol 160(2):231–246

    Article  Google Scholar 

  • Kochi K, Mishima Y, Nagasaka A (2010) Lateral input of particulate organic matter from bank slopes surpasses direct litter fall in the uppermost reaches of a headwater stream in Hokkaido, Japan. Limnology 11(1):77–84

    Article  Google Scholar 

  • Kuliński K, Pempkowiak J (2011) The carbon budget of the Baltic Sea. Biogeosciences 8(11):3219–3230

    Article  Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29(4):437–450

    Article  Google Scholar 

  • Leipe T, Tauber F, Vallius H, Virtasalo J, Uścinowicz S, Kowalski N, Hille S, Lindgren S, Myllyvirta T (2010) Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Mar Lett 31(3):175–188

    Article  Google Scholar 

  • Liu K, Seitzinger S, Mayorga E, Harrison J, Ittekkot V (2009) Fluxes of nutrients and selected organic pollutants carried by rivers. Arctic 3(587):1–7

    Google Scholar 

  • Lucas LV, Thompson JK, Brown LR (2009) Why are diverse relationships observed between phytoplankton biomass and transport time? Limnol Oceanogr 54(1):381–390

    Article  Google Scholar 

  • Ludwig W, Probst J-L, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Glob Biogeochem Cycles 10(1):23–41

    Article  Google Scholar 

  • Lyon SW, Meidani R, van der Velde Y, Dahlke HE, Swaney DP, Mörth C-M, Humborg C (2014) Seasonal and regional patterns in performance for a Baltic Sea drainage basin hydrologic model. JAWRA J Am Water Resour Assess 51(2):550–566

    Article  Google Scholar 

  • Maksymowska D, Richard P, Piekarek-Jankowska H, Riera P (2000) Chemical and isotopic composition of the organic matter sources in the Gulf of Gdansk (Southern Baltic Sea). Estuar Coast Shelf Sci 51(5):585–598

    Article  Google Scholar 

  • McGuire K, McDonnell JJ, Weiler M, Kendall C, McGlynn B, Welker J, Seibert J (2005) The role of topography on catchment-scale water residence time. Water Resour Res 41(5):1–14

    Article  Google Scholar 

  • Milliman JD, Syvitski JPM (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100(5):525–544

    Article  Google Scholar 

  • Minshall GW, Cummins KW, Petersen RC, Cushing CE, Bruns DA, Sedell JR, Vannote RL (1985) Developments in stream ecosystem theory. Can J Fish Aquat Sci 42(5):1045–1055

    Article  Google Scholar 

  • Monsen NE, Cloern JE, Lucas LV, Monismith SG (2002) A comment on the use of flushing time, residence time, and age as transport time scales. Limnol Oceanogr 47(5):1545–1553

    Article  Google Scholar 

  • Mörth C-M, Humborg C, Eriksson H, Danielsson Å, Rodriguez Medina M, Löfgren S, Swaney DP, Rahm L (2007) Modeling riverine nutrient transport to the Baltic Sea: a large-scale approach. Ambio 36(2):124–133

    Article  Google Scholar 

  • Neitsch S, Arnold J, Kiniry J, Williams J (2009) Soil and water assessment tool: theoretical documentation, version 2009. In: Texas Water Resources Institute Texas

  • Niinemets Ü (1999) Research review. Components of leaf dry mass per area—thickness and density—alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol 144(1):35–47

    Article  Google Scholar 

  • Oeurng C, Sauvage S, Sánchez-Pérez JM (2010) Dynamics of suspended sediment transport and yield in a large agricultural catchment, southwest France. Earth Surf Proc Land 35(11):1289–1301

    Article  Google Scholar 

  • Oeurng C, Sauvage S, Sánchez-Pérez J-M (2011) Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. J Hydrol 401(3–4):145–153

    Article  Google Scholar 

  • Omstedt A, Edman M, Claremar B, Frodin P, Gustafsson E, Humborg C, Hägg H, Mörth M, Rutgersson A, Schurgers G, Smith B, Wällstedt T, Yurova A (2012) Future changes in the Baltic Sea acid–base (pH) and oxygen balances. Tellus B 64(0):1–23

  • Palm A, Cousins I, Gustafsson Ö, Axelman J, Grunder K, Broman D, Brorström-Lundén E (2004) Evaluation of sequentially-coupled POP fluxes estimated from simultaneous measurements in multiple compartments of an air–water–sediment system. Environ Pollut 128(1–2):85–97

    Article  Google Scholar 

  • Piirsoo K, Pall P, Tuvikene A, Viik M (2008) Temporal and spatial patterns of phytoplankton in a temperate lowland river (Emajõgi, Estonia). J Plankton Res 30(11):1285–1295

    Article  Google Scholar 

  • Sandberg J, Andersson A, Johansson S, Wikner J (2004) Pelagic food web structure and carbon budget in the northern Baltic Sea: potential importance of terrigenous carbon. Mar Ecol Prog Ser 268:13–29

    Article  Google Scholar 

  • Schlesinger WH, Melack JM (1981) Transport of organic carbon in the world’s rivers. Tellus 33(2):172–187

    Article  Google Scholar 

  • Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF (2005) Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of Global nutrient export from watersheds (NEWS) models and their application. Glob Biogeochem Cycles 19(4):1–11

    Article  Google Scholar 

  • Siepak J (1999) Total organic carbon (TOC) as a sum parameter of water pollution in selected Polish rivers (Vistula, Odra, and Warta). Acta hydrochimhydrobiol 27(5):282–285

    Google Scholar 

  • Siergieiev D, Widerlund A, Lundberg A, Almqvist L, Collomp M, Ingri J, Öhlander B (2013) Impact of hydropower regulation on river water composition in Northern Sweden. Aquat Geochem 20:59–80

    Article  Google Scholar 

  • Smith VH (1979) Nutrient dependence of primary productivity in lakes. Limnol Oceanogr 24(6):1051–1064

    Article  Google Scholar 

  • Stepanauskas R, JØrgensen NO, Eigaard OR, Žvikas A, Tranvik LJ, Leonardson L (2002) Summer inputs of riverine nutrients to the Baltic Sea: bioavailability and eutrophication relevance. Ecol Monogr 72(4):579–597

    Article  Google Scholar 

  • Swaney DP, Sherman D, Howarth RW (1996) Modeling water, sediment and organic carbon discharges in the Hudson-Mohawk basin: coupling to terrestrial sources. Estuaries 19(4):833–847

    Article  Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc 29(1):118–146

    Article  Google Scholar 

  • Tian H, Yang Q, Najjar R, Ren W, Friedrichs MAM, Hopkinson CS, Pan S (2015) Anthropogenic and climatic influences on carbon fluxes from eastern North America to the Atlantic Ocean: a process-based modeling study. J Geophys Res Biogeosci 120(4):757–772

    Article  Google Scholar 

  • UNEP GEMstat UNEPGEMSGWP (2006) Global water quality data and statistics. In: Hodgson K (ed) United Nations environment programme global environment monitoring system (GEMS) water programme, vol 0107

  • USDA (1986) Urban hydrology for small watersheds. In: United States Department Agriculture, Natural Resources Conservation Service, vol 210-VI-TR-55

  • van Dongen BE, Zencak Z, Gustafsson Ö (2008) Differential transport and degradation of bulk organic carbon and specific terrestrial biomarkers in the surface waters of a sub-arctic brackish bay mixing zone. Mar Chem 112(3–4):203–214

    Article  Google Scholar 

  • Voβ M, Struck U (1997) Stable nitrogen and carbon isotopes as indicator of eutrophication of the Oder river (Baltic sea). Mar Chem 59(1–2):35–49

    Google Scholar 

  • Wania F, Persson J, Di Guardo A, McLachlan M (2000) The POPCYCLING-Baltic model a non-steady state multicompartment mass balance model of the fate of persistent organic pollutants in the Baltic Sea environment. Norwegian Institute for Air Research Report No. NILU OR 10: 2000

  • Webster JR, Benfield EF, Cairns J Jr (1979) Model predictions of effects of impoundment on particulate organic matter transport in a river system. In: Ward J, Stanford J (eds) The ecology of regulated streams. Springer, New York, pp 339–364

    Chapter  Google Scholar 

  • Williams J (1975a) Sediment routing for agricultural watersheds. Water Resour Bull 11(5):10

    Google Scholar 

  • Williams JR (1975b) Sediment-yield prediction with Universal Equation using runoff energy factor. In: Present and Prospective Technology for Predicting Sediment Yield and Sources. U.S. Department Agriculture, pp 244–252

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation planning. In: Agriculture handbook

  • Wulff FVR, Lars A, Larsson P (2001) A systems analysis of the Baltic Sea. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hans Estrup Andersen for providing soil erosivity data for the sediment yield calculations, Dr. Steve W. Lyon, Dr. Martyn Futter and Prof. Christoph Humborg for the valuable discussions about model development. We acknowledge the financial support through the Baltic Sea Adaptive Management (BEAM) project at Stockholm University and Formas, project HOCFlux #1503601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Dahlgren Strååt.

Additional information

Responsible Editor: Mark Brush.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1029 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strååt, K.D., Mörth, CM., Sobek, A. et al. Modeling total particulate organic carbon (POC) flows in the Baltic Sea catchment. Biogeochemistry 128, 51–65 (2016). https://doi.org/10.1007/s10533-016-0194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-016-0194-8

Keywords

Navigation