Skip to main content

Advertisement

Log in

Combined global change effects on ecosystem processes in nine U.S. topographically complex areas

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Concurrent changes in climate, atmospheric nitrogen (N) deposition, and increasing levels of atmospheric carbon dioxide (CO2) affect ecosystems in complex ways. The DayCent-Chem model was used to investigate the combined effects of these human-caused drivers of change over the period 1980–2075 at seven forested montane and two alpine watersheds in the United States. Net ecosystem production (NEP) increased linearly with increasing N deposition for six out of seven forested watersheds; warming directly increased NEP at only two of these sites. Warming reduced soil organic carbon storage at all sites by increasing heterotrophic respiration. At most sites, warming together with high N deposition increased nitrous oxide (N2O) emissions enough to negate the greenhouse benefit of soil carbon sequestration alone, though there was a net greenhouse gas sink across nearly all sites mainly due to the effect of CO2 fertilization and associated sequestration by plants. Over the simulation period, an increase in atmospheric CO2 from 350 to 600 ppm was the main driver of change in net ecosystem greenhouse gas sequestration at all forested sites and one of two alpine sites, but an additional increase in CO2 from 600 to 760 ppm produced smaller effects. Warming either increased or decreased net greenhouse gas sequestration, depending on the site. The N contribution to net ecosystem greenhouse gas sequestration averaged across forest sites was only 5–7 % and was negligible for the alpine. Stream nitrate (NO3 ) fluxes increased sharply with N-loading, primarily at three watersheds where initial N deposition values were high relative to terrestrial N uptake capacity. The simulated results displayed fewer synergistic responses to warming, N-loading, and CO2 fertilization than expected. Overall, simulations with DayCent-Chem suggest individual site characteristics and historical patterns of N deposition are important determinants of forest or alpine ecosystem responses to global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience 48(11):921–934

    Article  Google Scholar 

  • Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53(4):375–389

    Article  Google Scholar 

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. In: Fitter AH, Raffaelli DG (eds) Advances in ecological research, vol 30. Advances in Ecological Research, pp 1–67

  • Baron JS, Ojima DS, Holland EA, Parton WJ (1994) Analysis of nitrogen saturation potential in rocky-mountain tundra and forest—implications for aquatic systems. Biogeochemistry 27(1):61–82

    Article  Google Scholar 

  • Baron JS, Driscoll CT, Stoddard JL, Richer EE (2011) Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. Bioscience 61(8):602–613

    Article  Google Scholar 

  • Bedison JE, McNeil BE (2009) Is the growth of temperate forest trees enhanced along an ambient nitrogen deposition gradient? Ecology 90(7):1736–1742

    Article  Google Scholar 

  • Binkley D, Sollins P, Bell R, Sachs D, Myrold D (1992) Biogeochemistry of adjacent conifer and alder-conifer stands. Ecology 73(6):2022–2033

    Article  Google Scholar 

  • Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity: evidence since the middle of the 20th century. Glob Change Biol 12(5):862–882

    Article  Google Scholar 

  • Boisvenue C, Running SW (2010) Simulations show decreasing carbon stocks and potential for carbon emissions in Rocky Mountain forests over the next century. Ecol Appl 20(5):1302–1319

    Article  Google Scholar 

  • Bonan GB, Levis S (2010) Quantifying carbon-nitrogen feedbacks in the Community Land Model (CLM4). Geophys Res Lett 37(7):1–6

    Article  Google Scholar 

  • Butterbach-Bahl K, Gundersen P, Ambus P, Augustin J, Beier C, Boeckx P, Dannenmann M, Gimeno BS, Ibrom A, Kiese R, Kitzler B, Rees RM, Smith K, Stevens C, Vesala T, Zechmeister-Boltenstern S (2011) Nitrogen processes in terrestrial ecosystems. In: Sutton M, Howard C, Erisman J, Billen G, Bleeker A, Grennfelt P, Grinsven Hv, Grizzetti B (eds) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, Cambridge, pp 99–125

    Chapter  Google Scholar 

  • Campbell JL, Rustad LE, Boyer EW, Christopher SF, Driscoll CT, Fernandez IJ, Groffman PM, Houle D, Kiekbusch J, Magill AH, Mitchell MJ, Ollinger SV (2009) Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Can J For Res 39(2):264–284

    Article  Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320(5882):1456–1457

    Article  Google Scholar 

  • Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104(47):18866–18870

    Article  Google Scholar 

  • Canham CD, Cole JJ, Lauenroth WK (2003) The role of modeling in ecosystem science. In: Canham CD, Cole JS, Lauenroth WK (eds) Models in ecosystem science. Princeton University Press, Princeton, pp 1–12

    Google Scholar 

  • Chen BZ, Coops NC, Black TA, Jassal RS, Chen JM, Johnson M (2011) Modeling to discern nitrogen fertilization impacts on carbon sequestration in a Pacific Northwest Douglas-fir forest in the first-postfertilization year. Glob Change Biol 17(3):1442–1460

    Article  Google Scholar 

  • Clean Air Status and Trends Network (CASTNET) (2009) U.S. Environmental Protection Agency, Washington, D.C., http://www.epa.gov/castnet/

  • de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW, Reinds GJ, Sutton MA (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For Ecol Manag 258(8):1814–1823

    Article  Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Kulmala AE, Phongpan S (2000) General model for N2O and N-2 gas emissions from soils due to dentrification. Glob Biogeochem Cycle 14(4):1045–1060

    Article  Google Scholar 

  • Dijkstra FA, Hobbie SE, Knops JMH, Reich PB (2004) Nitrogen deposition and plant species interact to influence soil carbon stabilization. Ecol Lett 7(12):1192–1198

    Article  Google Scholar 

  • Eastaugh CS, Potzelsberger E, Hasenauer H (2011) Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC. Tree Physiol 31(3):262–274

    Article  Google Scholar 

  • Faquhar GD (1989) Models of integrated photosynthesis of cells and leaves. Philos Trans R Soc Lond 33B:357–367

    Article  Google Scholar 

  • Hartman MD, Baron JS, Ojima DS (2007) Application of a coupled ecosystem-chemical equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky Mountain watershed. Ecol Model 200(3–4):493–510

    Article  Google Scholar 

  • Hartman MD, Baron JS, Clow DW, Creed IF, Driscoll CT, Ewing HA, Haines BD, Knoepp J, Lajtha K, Ojima DS, Parton WJ, Renfro J, Robinson RB, Van Miegroet H, Weathers KC, Williams MW (2009) DayCent-Chem simulations of ecological and biogeochemical processes of eight mountain ecosystems in the United States. U.S. Geological Survey Scientific Investigations Report 2009–5150, p. 174

  • Holland EA, Dentener FJ, Braswell BH, Sulzman JM (1999) Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46(1–3):7–43

    Google Scholar 

  • Hyvonen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomaki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Stromgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173(3):463–480

    Article  Google Scholar 

  • IPCC (1996) Technical summary. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995: the science of climate change: Contribution of Working Group I to the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 9–50

  • IPCC/WMO/UNEP (2000) Good practice guidance and uncertainty management in national greenhouse gas inventories. Intergovernmental Panel on Climate. http://www.ipcc-nggip.iges.or.jp/public/gp/bgp/4_6_Indirect_N2O_Agriculture.pdf

  • Janssens IA, Luyssaert S (2009) Nitrogen’s carbon bonus. Nat Geosci 2(5):318–319

    Article  Google Scholar 

  • Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3(5):315–322

    Article  Google Scholar 

  • Lamarque JF, Kiehl JT, Brasseur GP, Butler T, Cameron-Smith P, Collins WD, Collins WJ, Granier C, Hauglustaine D, Hess PG, Holland EA, Horowitz L, Lawrence MG, McKenna D, Merilees P, Prather MJ, Rasch PJ, Rotman D, Shindell D, Thornton P (2005) Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: analysis of nitrogen deposition. J Geophys Res-Atmos 110(D19):D19303

    Article  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831–836

    Article  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371–379

    Article  Google Scholar 

  • Leung LR, Qian Y Hydrological response to climate variability, climate change, and climate extreme in the USA: climate model evaluation and projections In: Regional hydrological impacts of climatic variability and change—impact assessment and decision making. Proceedings of symposium S6 held during the Seventh IAHS Scientific Assembly. IAHS Publ., Foz do Iguaçu, Brazil 2005. vol 295. IAHS Publ.,

  • Leung LR, Qian Y, Bian XD, Hunt A (2003) Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000. part II: Mesoscale ENSO anomalies. J Clim 16(12):1912–1928

    Article  Google Scholar 

  • Liu LL, Greaver TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett 12(10):1103–1117

    Article  Google Scholar 

  • Liu LL, Greaver TL (2010) A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol Lett 13(7):819–828

    Article  Google Scholar 

  • McMahon SM, Parker GG, Miller DR (2010) Evidence for a recent increase in forest growth. Proc Natl Acad Sci USA 107(8):3611–3615

    Article  Google Scholar 

  • McNulty SG, Aber JD, Boone RD (1991) Spatial changes in forest floor and foliar chemistry of spruce-fir forests across central New England. Biogeochemistry 14:13–29

    Article  Google Scholar 

  • Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou YM, Tang J (2011) Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci USA 108(23):9508–9512

    Article  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjonaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398(6723):145–148

    Article  Google Scholar 

  • Nakicenovic N et al (2000) Special report on emissions scenarios: intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • National Atmospheric Deposition Program/National Trends Network (NADP/NTN) (2009) Illinois State Water Survey, Urbana. http://nadp.sws.uiuc.edu/

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO(2) enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107(45):19368–19373

    Article  Google Scholar 

  • Pan YD, Melillo JM, McGuire AD, Kicklighter DW, Pitelka LF, Hibbard K, Pierce LL, Running SW, Ojima DS, Parton WJ, Schimel DS, Members V (1998) Modeled responses of terrestrial ecosystems to elevated atmospheric CO(2): a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP). Oecologia 114(3):389–404

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In: U.S. Geological Survey Water-Resources Investigations Report 99–4259, Denver, CO, pp 1–312

  • Parton WJ, Stewart JWB, Cole CV (1988) Dynamics of C, N, P and S in Grassland Soils: a model. Biogeochemistry 5(1):109–131

    Article  Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut JC, Seastedt T, Moya EG, Kamnalrut A, Kinyamario JI (1993) Observations and modeling of biomass and soil organic-matter dynamics for the grassland biome worldwide. Glob Biogeochem Cycle 7(4):785–809

    Article  Google Scholar 

  • Parton WJ, Mosier AR, Ojima DS, Valentine DW, Schimel DS, Weier K, Kulmala AE (1996) Generalized model for N-2 and N2O production from nitrification and denitrification. Glob Biogeochem Cycle 10(3):401–412

    Article  Google Scholar 

  • Parton WJ, Hartman M, Ojima D, Schimel D (1998) DAYCENT and its land surface submodel: description and testing. Glob Planet Change 19(1–4):35–48

    Article  Google Scholar 

  • Parton WJ, Holland EA, Del Grosso SJ, Hartman MD, Martin RE, Mosier AR, Ojima DS, Schimel DS (2001) Generalized model for NOx and N2O emissions from soils. J Geophys Res-Atmos 106(D15):17403–17419

    Article  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315(5810):361–364

    Article  Google Scholar 

  • Perakis SS, Sinkhorn ER (2011) Biogeochemistry of a temperate forest nitrogen gradient. Ecology 92(7):1481–1491

    Article  Google Scholar 

  • Pinder RW, Bettez ND, Bonan GB, Greaver TL, Wieder WR, Schlesinger WH, Davidson EA (2012) Impacts of human alteration of the nitrogen cycle in the US on radiative forcing. Biogeochemistry. doi:10.1007/s10533-012-9787-z

    Google Scholar 

  • Ramaswamy V (2001) Radiative forcing of climate change. In: Houghton JT (ed) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Saleska SR, Harte J, Torn MS (1999) The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Glob Change Biol 5(2):125–141

    Article  Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106(1):203–208

    Article  Google Scholar 

  • Schulze ED, Luyssaert S, Ciais P, Freibauer A, Janssens IA, Soussana JF, Smith P, Grace J, Levin I, Thiruchittampalam B, Heimann M, Dolman AJ, Valentini R, Bousquet P, Peylin P, Peters W, Rodenbeck C, Etiope G, Vuichard N, Wattenbach M, Nabuurs GJ, Poussi Z, Nieschulze J, Gash JH, CarboEurope T (2009) Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. Nat Geosci 2(12):842–850

    Article  Google Scholar 

  • Sutton MA, Simpson D, Levy PE, Smith RI, Reis S, van Oijen M, de Vries W (2008) Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration. Glob Change Biol 14(9):2057–2063

    Article  Google Scholar 

  • Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472(7342):159–161

    Article  Google Scholar 

  • Thomas RQ, Canham CD, Weathers KC, Goodale CL (2010) Increased tree carbon storage in response to nitrogen deposition in the US. Nat Geosci 3(1):13–17

    Article  Google Scholar 

  • Van Miegroet H, Creed IF, Nicholas NS, Tarboton DG, Webster KL, Shubzda J, Robinson B, Smoot J, Johnson DW, Lindberg SE, Lovett G, Nodvin S, Moore S (2001) Is there synchronicity in N input and output fluxes at the Noland Divide Watershed, a small N-saturated forested catchment in the Southern Appalachians? Sci World S2:480–492

    Article  Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL (2004) Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol Biochem 36(9):1443–1451

    Article  Google Scholar 

  • Zaehle S, Ciais P, Friend AD, Prieur V (2011) Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nat Geosci 4(9):601–605

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by the EPA Clean Air Markets Division, the National Park Service Air Resources Division, and the US Geological Survey. We thank Amanda Elliot Lindsey for the graphics, and Lois St. Brice for her help with the Acadia simulations. We are grateful to the editor and the anonymous reviewers for very helpful comments. This is a product of the USGS Western Mountain Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melannie D. Hartman.

Additional information

Responsible Editor: Christopher Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartman, M.D., Baron, J.S., Ewing, H.A. et al. Combined global change effects on ecosystem processes in nine U.S. topographically complex areas. Biogeochemistry 119, 85–108 (2014). https://doi.org/10.1007/s10533-014-9950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-014-9950-9

Keywords

Navigation