Skip to main content
Log in

Effect of process variables on the sulfate reduction process in bioreactors treating metal-containing wastewaters: factorial design and response surface analyses

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The individual and combined effect of the pH, chemical oxygen demand (COD) and SO4 2− concentration, metal to sulfide (M/S2−) ratio and hydraulic retention time (HRT) on the biological sulfate reduction (SR) process was evaluated in an inverse fluidized bed reactor by factorial design analysis (FDA) and response surface analysis (RSA). The regression-based model of the FDA described the experimental results well and revealed that the most significant variable affecting the process was the pH. The combined effect of the pH and HRT was barely observable, while the pH and COD concentration positive effect (up to 7 and 3 gCOD/L, respectively) enhanced the SR process. Contrary, the individual COD concentration effect only enhanced the COD removal efficiency, suggesting changes in the microbial pathway. The RSA showed that the M/S2− ratio determined whether the inhibition mechanism to the SR process was due to the presence of free metals or precipitated metal sulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Public Health Association (APHA) (2005) Standard methods for examination of water and wastewater, 20th edn. APHA, Washington, DC

  • Bijmans MFM, Dopson M, Ennin F, Lens PNL, Buisman CJN (2008a) Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor. J Microbiol Biotechnol 18:1809–1818

    Article  CAS  PubMed  Google Scholar 

  • Bijmans MFM, Peeters TWT, Lens PNL, Buisman CJN (2008b) High rate sulfate reduction at pH 6 in a pH-auxostat submerged membrane bioreactor fed with formate. Water Res 42:2439–2448. doi:10.1016/j.watres.2008.01.025

    Article  CAS  PubMed  Google Scholar 

  • Bijmans MFM, van Helvoort P-J, Buisman CJN, Lens PNL (2009) Effect of the sulfide concentration on zinc bio-precipitation in a single stage sulfidogenic bioreactor at pH 5.5. Sep Purif Technol 69:243–248

    Article  CAS  Google Scholar 

  • Bijmans MFM, de Vries E, Yang C-H, Buisman N, Cees J, Lens PNL, Dopson M (2010) Sulfate reduction at pH 4.0 for treatment of process and wastewaters. Biotechnol Prog 26:1029–1037. doi:10.1002/btpr.400

    CAS  PubMed  Google Scholar 

  • Bijmans MFM, Buisman CJN, Meulepas RJW, Lens PNL (2011) 6.34—Sulfate reduction for inorganic waste and process water treatment. In: Murray M-Y (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 435–446

    Chapter  Google Scholar 

  • Brüser T, Lens PNL, Truper H (2000) The biological sulfur cycle. In: Lens PNL, Hulshoff PL (eds) Environmental technologies to treat sulfur pollution: principles and engineering. IWA Publishing, London, pp 47–85

    Google Scholar 

  • Canfield DE, Raiswell R (1999) The evolution of the sulfur cycle. Am J Sci 299:697–723. doi:10.2475/ajs.299.7-9.697

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064. doi:10.1016/j.biortech.2007.01.057

    Article  CAS  PubMed  Google Scholar 

  • Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36

    Article  CAS  Google Scholar 

  • Elferink S, Krooneman J, Gottschal JC, Spoelstra SF, Faber F, Driehuis F (2001) Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67:125–132

    Article  CAS  Google Scholar 

  • Gallegos-Garcia M, Celis LB, Rangel-Méndez R, Razo-Flores E (2009) Precipitation and recovery of metal sulfides from metal containing acidic wastewater in a sulfidogenic down-flow fluidized bed reactor. Biotechnol Bioeng 102:91–99

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Silva BM, Briones-Gallardo R, Razo-Flores E, Celis LB (2009) Inhibition of sulfate reduction by iron, cadmium and sulfide in granular sludge. J Hazard Mater 172:400–407. doi:10.1016/j.jhazmat.2009.07.022

    Article  CAS  PubMed  Google Scholar 

  • Huisman JL, Schouten G, Schultz C (2006) Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83:106–113

    Article  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2005) Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Sci Total Environ 338:81–93. doi:10.1016/j.scitotenv.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  • Kaksonen AH, Puhakka JA (2007) Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng Life Sci 7:541–564

    Article  CAS  Google Scholar 

  • Kaksonen AH, Plumb JJ, Robertson WJ, Riekkola-Vanhanen M, Franzmann PD, Puhakka JA (2006) The performance, kinetics and microbiology of sulfidogenic fluidized-bed treatment of acidic metal- and sulfate-containing wastewater. Hydrometallurgy 83:204–213

    Article  CAS  Google Scholar 

  • Kimura S, Hallberg K, Johnson D (2006) Sulfidogenesis in low pH (3.8–4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17:57–65. doi:10.1007/s10532-005-3050-4

    Article  CAS  Google Scholar 

  • Labrenz M et al (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747. doi:10.1126/science.290.5497.1744

    Article  CAS  PubMed  Google Scholar 

  • Lopes SIC, Sulistyawati I, Capela MI, Lens PNL (2007) Low pH (6, 5 and 4) sulfate reduction during the acidification of sucrose under thermophilic (55 °C) conditions. Process Biochem 42:580–591. doi:10.1016/j.procbio.2006.11.004

    Article  CAS  Google Scholar 

  • Madamba PS, Liboon FA (2001) Optimization of the vacuum dehydration of celery (Apium graveolens) using the response surface methodology. Dry Technol 19:611–626

    Article  CAS  Google Scholar 

  • Montgomery DC (2004) Design and analysis of experiments, 7th edn. Wiley, New York

    Google Scholar 

  • Moosa S, Harrison STL (2006) Product inhibition by sulphide species on biological sulphate reduction for the treatment of acid mine drainage. Hydrometallurgy 83:214–222. doi:10.1016/j.hydromet.2006.03.026

    Article  CAS  Google Scholar 

  • Neculita C-M, Zagury GJ, Bussiere B (2007) Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. J Environ Qual 36:1–16. doi:10.2134/jeq2006.0066

    Article  CAS  PubMed  Google Scholar 

  • Oyekola OO, van Hille RP, Harrison STL (2009) Study of anaerobic lactate metabolism under biosulphidogenic conditions. Water Res 43:3345–3354

    Article  CAS  PubMed  Google Scholar 

  • Papirio S, Villa-Gomez DK, Esposito G, Lens PNL, Pirozzi F (2012) Acid mine drainage treatment in fluidized-bed bioreactors by sulfate-reducing bacteria: a critical review. Crit Rev Environ Sci Technol (in press)

  • Petrucci RH, Moews PC Jr (1962) H2S equilibria: the precipitation and solubilities of metal sulfides. J Chem Educ 39:391

    Article  CAS  Google Scholar 

  • Reis MAM, Almeida JS, Lemos PC, Carrondo MJT (1992) Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol Bioeng 40:593–600. doi:10.1002/bit.260400506

    Article  CAS  PubMed  Google Scholar 

  • Tabak HH, Scharp R, Burckle J, Kawahara FK, Govind R (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation 14:423–436

    Article  CAS  PubMed  Google Scholar 

  • Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR (2002) Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environ Toxicol 17:40–48

    Article  CAS  PubMed  Google Scholar 

  • Utgikar VP, Chaudhary N, Koeniger A, Tabak HH, Haines JR, Govind R (2004) Toxicity of metals and metal mixtures: analysis of concentration and time dependence for zinc and copper. Water Res 38:3651–3658

    Article  CAS  PubMed  Google Scholar 

  • Villa-Gomez DK, Ababneh H, Papirio S, Rousseau DPL, Lens PNL (2011) Effect of sulfide concentration on the location of the metal precipitates in inversed fluidized bed reactors. J Hazard Mater 192:200–207. doi:10.1016/j.jhazmat.2011.05.002

    CAS  PubMed  Google Scholar 

  • Villa-Gomez DK, Cassidy J, Keesman KJ, Sampaio R, Lens PNL (2014a) Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors. Water Res 50:48–58

    Article  CAS  PubMed  Google Scholar 

  • Villa Gomez DK, Enright AM, Rini EL, Buttice A, Kramer H, Lens PNL (2014b) Effect of hydraulic retention time on metal precipitation in sulfate reducing inverse fluidized bed reactors. J Chem Technol Biotechnol. doi:10.1002/jctb.4296

    Google Scholar 

  • White C, Gadd GM (1996) Mixed sulphate-reducing bacterial cultures for bioprecipitation of toxic metals: factorial and response-surface analysis of the effects of dilution rate, sulphate and substrate concentration. Microbiology 142:2197–2205. doi:10.1099/13500872-142-8-2197

    Article  CAS  Google Scholar 

  • Zayed G, Winter J (2000) Inhibition of methane production from whey by heavy metals—protective effect of sulfide. Appl Microbiol Biotechnol 53:726–731. doi:10.1007/s002530000336

    Article  CAS  PubMed  Google Scholar 

  • Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch Microbiol 124:1–11. doi:10.1007/bf00407022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by a PhD fellowship from the National Council for Science and Technology (CONACYT-192635/303731) from Mexico and a BOYSCAST Fellowship (SR/BY/L-19/10) from the Department of Science and Technology of India. The authors would like to thank the laboratory staff (UNESCO-IHE, Institute for Water Education) for the analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Villa-Gomez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villa-Gomez, D.K., Pakshirajan, K., Maestro, R. et al. Effect of process variables on the sulfate reduction process in bioreactors treating metal-containing wastewaters: factorial design and response surface analyses. Biodegradation 26, 299–311 (2015). https://doi.org/10.1007/s10532-015-9735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-015-9735-4

Keywords

Navigation