Skip to main content
Log in

Spatial prioritization for the conservation of terrestrial vertebrate genera in the Neotropics

  • Original Research
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Vertebrate genera should be considered for spatial conservation prioritisation due to their importance in terms of intrinsic values for biodiversity maintenance and conservation, which were closely associated with phylogenetic diversity. We conducted spatial conservation prioritisation for Neotropical terrestrial vertebrate genera. We used species distribution modelling to project the vertebrate distributions at the species and genus levels based on a set of both past and current climate variables. The zonation framework was then applied to conduct spatial conservation prioritisation for Neotropical vertebrates based on the distribution probabilities of different genus groups (all genera, amphibians, birds, mammals, and reptiles). The largest priority conservation areas for terrestrial vertebrate genera, including amphibians, birds, mammals, and reptiles, were in ecoregions belonging to the tropical and subtropical moist broadleaf forests, tropical and subtropical dry broadleaf forests, and tropical and subtropical grasslands, savannas, and shrublands. Conservation gaps persist in existing protected area networks, and the identified priority areas should complement existing protected areas to address these gaps. We recommend the protected area network for the key ecoregions for vertebrate conservation identified in this study, but this requires interventions by all governments in the Neotropical Region. Our study offers new insights into the use of a conservation planning framework coupled with genus distribution from an application perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the distribution data and Zonation sets & results used in this manuscript are publicly available from the Dryad database (https://doi.org/10.5061/dryad.dr7sqvb13). The data on SDM results, Schoener’s D and ecoregions were shown in supporting materials. Table S1. Number of occurrence records and AUC for MaxEnt distribution modelling at genus level; Table S2. Number of occurrence records and AUC for MaxEnt distribution modelling at species level; Table S3. Collinearity among the four climatic variables; Table S4. The overlaps (i.e., Schoener’s D) in priority conservation areas between genera and species; Table S5. Areas, coverage percentages of priority conservation areas (top 50% of priority conservation rank) on ecoregions, and percentages of protected areas on priority conservation areas for terrestrial vertebrates (all the genera, amphibians, birds, mammals, and reptiles) in the Neotropics across different ecoregions.

References

  • Aldabe J, Lanctot RB, Blanco D, Rocca P, Inchausti P (2019) Managing grasslands to maximize migratory shorebird use and livestock production. Rangel Ecol Manag 7:150–159

    Article  Google Scholar 

  • Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Silvestro D, Condamine FL (2018) Amazonia is the primary source of neotropical biodiversity. Proc Natl Acad Sci USA 115:6034–6039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araújo MB, Nogués-Bravo D, Diniz‐Filho JAF, Haywood AM, Valdes PJ, Rahbek C (2008) Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31:8–15

    Article  Google Scholar 

  • Arneth A, Brown C, Rounsevell MDA (2014) Global models of human decision-making for land-based mitigation and adaptation assessment. Nat Clim Change 4:550–557

    Article  Google Scholar 

  • Barber RA, Ball SG, Morris RK, Gilbert F (2022) Target-group backgrounds prove effective at correcting sampling bias in Maxent models. Divers Distrib 28:128–141

    Article  Google Scholar 

  • Batalha MA (2011) The brazilian Cerrado is not a biome. Biota Neotrop 11:21–24

    Article  Google Scholar 

  • Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG, Thuiller W (2011) Impacts of climate change on the world’s most exceptional ecoregions. Proc Natl Acad Sci USA 108:2306–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender SF, Wagg C, van der Heijden MG (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31:440–452

    Article  PubMed  Google Scholar 

  • Bennett RE, Leuenberger W, Leja BBB, Cáceres AS, Johnson K, Larkin J (2018) Conservation of neotropical migratory birds in tropical hardwood and oil palm plantations. PLoS ONE 13:e0210293

    Article  PubMed  PubMed Central  Google Scholar 

  • Bigard C, Thiriet P, Pioch S, Thompson JD (2020) Strategic landscape-scale planning to improve mitigation hierarchy implementation: an empirical case study in Mediterranean France. Land Use Policy 90:104286

    Article  Google Scholar 

  • Brancalion PH, Melo FP, Tabarelli M, Rodrigues RR (2013) Restoration reserves as biodiversity safeguards in human-modified landscapes. Nat Conserv 11:186–190

    Article  Google Scholar 

  • Brum FT, Graham CH, Costa GC, Hedges SB, Penone C, Radeloff VC, Rondinini C, Loyola R, Davidson AD (2017) Global priorities for conservation across multiple dimensions of mammalian diversity. P Proc Natl Acad Sci USA 114:7641–7646

    Article  CAS  Google Scholar 

  • Brum FT, Pressey RL, Bini LM, Loyola R (2019) Forecasting conservation impact to pinpoint spatial priorities in the brazilian Cerrado. Biol Conserv 240:108283

    Article  Google Scholar 

  • Burbano-Girón J, Jantke K, Molina-Berbeo MA, Buriticá-Mejía N, Urbina-Cardona JN, Sánchez-Clavijo LM, Etter A (2022) An assessment of spatial conservation priorities for biodiversity attributes: composition, structure, and function of neotropical biodiversity. Biol Conserv 265:109421

    Article  Google Scholar 

  • Cámara-Leret R, Raes N, Roehrdanz P, De Fretes Y, Heatubun CD, Roeble L, Schuiteman A, van Welzen PC, Hannah L (2019) Climate change threatens New Guinea’s biocultural heritage. Sci Adv 5:eaaz1455

    Article  PubMed  PubMed Central  Google Scholar 

  • Cárcamo PF, Garay-Flühmann R, Squeo FA, Gaymer CF (2014) Using stakeholders’ perspective of ecosystem services and biodiversity features to plan a marine protected area. Environ Sci Policy 40:116–131

    Article  Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the brazilian Atlantic forest. J Biogeogr 35:1187–1201

    Article  Google Scholar 

  • Carvalho SB, Velo-Antón G, Tarroso P, Portela AP, Barata M, Carranza S, Moritz C, Possingham HP (2017a) Spatial conservation prioritization of biodiversity spanning the evolutionary continuum. Nat Ecol Evol 1:1–8

    Article  Google Scholar 

  • Chauvenet AL (2023) The conservation potential of protected areas over time measured through design and ecological integrity indicators is affected by land conversion. Biol Conserv 279:109908

    Article  Google Scholar 

  • Costa GC, Nogueira C, Machado RB, Colli GR (2010) Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers Conserv 19:883–899

    Article  Google Scholar 

  • Cundill G, Cumming GS, Biggs D, Fabricius C (2012) Soft systems thinking and social learning for adaptive management. Conserv Biol 26:13–20

    Article  CAS  PubMed  Google Scholar 

  • Daru BH, le Roux PC, Gopalraj J, Park DS, Holt BG, Greve M (2019) Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity. Glob Ecol Biogeogr 28:757–766

    Article  Google Scholar 

  • de Carvalho DL, Sousa-Neves T, Cerqueira PV, Gonsioroski G, Silva SM, Silva DP, Santos MPD (2017b) Delimiting priority areas for the conservation of endemic and threatened neotropical birds using a niche-based gap analysis. PLoS ONE 12:e0171838

    Article  PubMed  PubMed Central  Google Scholar 

  • Eken G, Bennun L, Brook TM, Darwall W, Fishpool LD, Foster M, Knox D, Langhammer P, Matiku P, Radford E (2004) Key biodiversity areas as site conservation targets. Bioscience 54:1110–1118

    Article  Google Scholar 

  • Faleiro FV, Machado RB, Loyola RD (2013) Defining spatial conservation priorities in the face of land-use and climate change. Biol Conserv 158:248–257

    Article  Google Scholar 

  • Fernández-Giménez ME, Augustine DJ, Porensky LM, Wilmer H, Derner JD, Briske DD, Stewart MO (2019) Complexity fosters learning in collaborative adaptive management. Ecol Soc 24:29

    Article  Google Scholar 

  • Fisher-Reid MC, Kozak KH, Wiens JJ (2012) How is the rate of climatic‐niche evolution related to climatic‐niche breadth? Evolution 66:3836–3851

    Article  PubMed  Google Scholar 

  • Françoso RD, Dexter KG, Machado RB, Pennington RT, Pinto JR, Brandão RA, Ratter JA (2019) Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status. Biodivers Conserv 29:1477–1500

    Article  Google Scholar 

  • García-Barrios L, Galván-Miyoshi YM, Valsieso-Pérez IA, Masera OR, Bocco G, Vandermeer J (2009) Neotropical forest conservation, agricultural intensification, and rural out-migration: the mexican experience. Bioscience 59:863–873

    Article  Google Scholar 

  • García-Roselló E, Guisande C, Heine J, Pelayo‐Villamil P, Manjarrés‐Hernández A, González Vilas L, González‐Dacosta J, Vaamonde A, Granado‐Lorencio C (2014) Using ModestR to download, import and clean species distribution records. Meth Ecol Evol 5:708–713

    Article  Google Scholar 

  • García-Roselló E, Guisande C, Manjarrés‐Hernández A, González‐Dacosta J, Heine J, Pelayo‐Villamil P, González‐Vilas L, Vari RP, Vaamonde A, Granado‐Lorencio C, Lobo JM (2015) Can we derive macroecological patterns from primary global Biodiversity Information Facility data? Glob Ecol Biogeogr 24:335–347

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH (2011) The community climate system model version 4. J Clim 24:4973–4991

    Article  Google Scholar 

  • Hannah L, Roehrdanz PR, Marquet PA, Enquist BJ, Midgley G, Foden W, Lovett JC, Corlett RT, Corcoran D, Butchart SH, Boyle B (2020) 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 43:1–11

    Article  Google Scholar 

  • Hanski I (2011) Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40:248–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang J, Lu X, Huang J, Ma K (2016) Conservation priority of endemic chinese flora at family and genus levels. Biodivers Conserv 25:23–35

    Article  Google Scholar 

  • Jenkins CN, Pimm SL, Joppa LN (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proc Natl Acad Sci USA 110:E2602–E2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jetz W, Fine PV (2012) Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol 10:e1001292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kareksela S, Moilanen A, Tuominen S, Kotiaho JS (2013) Use of inverse spatial conservation prioritization to avoid biological diversity loss outside protected areas. Conserv Biol 27:1294–1303

    Article  PubMed  Google Scholar 

  • Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:170122

    Article  PubMed  PubMed Central  Google Scholar 

  • Keesing F, Ostfeld RS, Okanga S, Huckett S, Bayles BR, Chaplin-Kramer R, Fredericks LP, Hedlund T, Kowal V, Tallis H, Warui CM (2018) Consequences of integrating livestock and wildlife in an african savanna. Nat Sustain 1:566–573

    Article  Google Scholar 

  • Kelt DA, Van Vuren DH (2001) The ecology and macroecology of mammalian home range area. Am Nat 157:637–645

    Article  CAS  PubMed  Google Scholar 

  • Kiester AR, Scott JM, Csuti B, Noss RF, Butterfield B, Sahr K, White D (1996) Conservation prioritization using GAP data. Conserv Biol 10:1332–1342

    Article  Google Scholar 

  • Kukkala AS, Moilanen A (2013) Core concepts of spatial prioritisation in systematic conservation planning. Biol Rev 88:443–464

    Article  PubMed  Google Scholar 

  • Lazos-Chavero E, Zinda J, Bennett-Curry A, Balvanera P, Bloomfield G, Lindell C, Negra C (2016) Stakeholders and tropical reforestation: challenges, trade‐offs, and strategies in dynamic environments. Biotropica 48:900–914

    Article  Google Scholar 

  • Lehtomäki J, Moilanen A (2013) Methods and workflow for spatial conservation prioritization using Zonation. Environ Model Softw 47:128–137

    Article  Google Scholar 

  • Lemes P, Loyola RD (2013) Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PLoS ONE 8:e54323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemes L, de Andrade AFA, Loyola R (2020) Spatial priorities for agricultural development in the brazilian Cerrado: may economy and conservation coexist? Biodivers Conserv 29:1683–1700

    Article  Google Scholar 

  • Lemly AD, Kingsford RT, Thompson JR (2000) Irrigated agriculture and wildlife conservation: conflict on a global scale. Environ Manag 25:485–512

    Article  CAS  Google Scholar 

  • Lentini PE, Wintle BA (2015) Spatial conservation priorities are highly sensitive to choice of biodiversity surrogates and species distribution model type. Ecography 38:1101–1111

    Article  Google Scholar 

  • Leroux SJ, Krawchuk MA, Schmiegelow F, Cumming SG, Lisgo K, Anderson LG, Petkova M (2010) Global protected areas and IUCN designations: do the categories match the conditions? Biol Conserv 143:609–616

    Article  Google Scholar 

  • Li D, Wu S, Liu L, Zhang Y, Li S (2018) Vulnerability of the global terrestrial ecosystems to climate change. Global Change Biol 24:4095–4106

    Article  Google Scholar 

  • Loyola RD, Kubota U, da Fonseca GA, Lewinsohn TM (2009) Key neotropical ecoregions for conservation of terrestrial vertebrates. Biodivers Conserv 18:2017

    Article  Google Scholar 

  • Mantyka-Pringle CS, Visconti P, Di Marco M, Martin TG, Rondinini C, Rhodes JR (2015) Climate change modifies risk of global biodiversity loss due to land-cover change. Biol Conserv 187:103–111

    Article  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243

    Article  CAS  PubMed  Google Scholar 

  • Martin GM, González B, Monjeau A (2021) Continental assessment of South American marsupial conservation priorities: a methodological approach using a spatially explicit conservation indicator. Biol Conserv 256:109045

    Article  Google Scholar 

  • Mehrabi Z, Ellis EC, Ramankutty N (2018) The challenge of feeding the world while conserving half the planet. Nat Sustain 1:409–412

    Article  Google Scholar 

  • Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Article  Google Scholar 

  • Meurant M, Gonzalez A, Doxa A, Albert CH (2018) Selecting surrogate species for connectivity conservation. Biol Conserv 227:326–334

    Article  Google Scholar 

  • Monteiro LM, Brum FT, Pressey RL, Morellato LPC, Soares-Filho B, Lima-Ribeiro MS, Loyola R (2018) Evaluating the impact of future actions in minimizing vegetation loss from land conversion in the brazilian cerrado under climate change. Biodivers Conserv 29:1701–1722

    Article  Google Scholar 

  • Mouchet M, Levers C, Zupan L, Kuemmerle T, Plutzar C, Erb K, Lavorel S, Thuiller W, Haberl H (2015) Testing the effectiveness of environmental variables to explain european terrestrial vertebrate species richness across biogeographical scales. PLoS ONE 10:e0131924

    Article  PubMed  PubMed Central  Google Scholar 

  • Muscatello A, Elith J, Kujala H (2021) How decisions about fitting species distribution models affect conservation outcomes. Conserv Biol 35:1309–1320

    Article  PubMed  Google Scholar 

  • Noh JK, Echeverría C, Pauchard A, Cuenca P (2019) Extinction debt in a biodiversity hotspot: the case of the chilean winter rainfall-valdivian forests. Landsc Ecol Eng 15:1–12

    Article  Google Scholar 

  • Olson DM, Dinerstein E (1998) The global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv Biol 12:502–515

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GV, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ (2001) Terrestrial ecoregions of the World: a New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51:933–938

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography 40:887–893

    Article  Google Scholar 

  • Pimm SL, Jenkins CN, Li BV (2018) How to protect half of Earth to ensure it protects sufficient biodiversity. Sci Adv 4:eaat2616

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollock LJ, Thuiller W, Jetz W (2017) Large conservation gains possible for global biodiversity facets. Nature 546:141–144

    Article  CAS  PubMed  Google Scholar 

  • Pretty J, Smith D (2004) Social capital in biodiversity conservation and management. Conserv Biol 18:631–638

    Article  Google Scholar 

  • Prieto-Torres DA, Nori J, Rojas-Soto OR (2018) Identifying priority conservation areas for birds associated to endangered neotropical dry forests. Biol Conserv 228:205–214

    Article  Google Scholar 

  • Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643

    Article  Google Scholar 

  • Reside AE, VanDerWal J, Moran C (2017) Trade-offs in carbon storage and biodiversity conservation under climate change reveal risk to endemic species. Biol Conserv 207:9–16

    Article  Google Scholar 

  • Richardson JE, Pennington RT, Pennington TD, Hollingsworth PM (2001) Rapid diversification of a species-rich genus of neotropical rain forest trees. Science 29:2242–2245

    Article  Google Scholar 

  • Rodrigues AS, Gaston KJ (2002) Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol Conserv 105:103–111

    Article  Google Scholar 

  • Rodrigues AS, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Cowling RM, Fishpool LDC, da Fonseca GAB, Gaston KJ, Hoffmann M, Long JS, Marquet PA, Pilgrim JD, Pressey RL, Schipper J, Sechrest W, Stuart SN, Underhill LG, Waller RW, Watts MEJ, Yan X (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Echeverry J, Echeverría C, Oyarzún C, Morales L (2017) Spatial congruence between biodiversity and ecosystem services in a forest landscape in southern Chile: basis for conservation planning. Bosque 38:495–506

    Article  Google Scholar 

  • Rodríguez-Echeverry J, Echeverría C, Oyarzún C, Morales L (2018) Impact of land-use change on biodiversity and ecosystem services in the chilean temperate forests. Landsc Ecol 33:439–453

    Article  Google Scholar 

  • Rolland J, Silvestro D, Schluter D, Guisan A, Broennimann O, Salamin N (2018) The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nat Ecol Evol 2459 – 464

  • Rosauer DF, Byrne M, Blom MP, Coates DJ, Donnellan S, Doughty P, Keogh JS, Kinloch J, Laver RJ, Myers C, Oliver PM, Potter S, Silva ACF, Smith J, Moritz C (2018) Real-world conservation planning for evolutionary diversity in the Kimberley, Australia, sidesteps uncertain taxonomy. Conserv Lett 11:e12438

    Article  Google Scholar 

  • Sandbrook C (2015) The social implications of using drones for biodiversity conservation. Ambio 44:636–647

    Article  PubMed  PubMed Central  Google Scholar 

  • Sano EE, Rodrigues AA, Martins ES, Bettiol GM, Bustamante MM, Bezerra AS, Couto AF Jr, Vasconcelos V, Schüler J, Bolfe EL (2019) Cerrado ecoregions: a spatial framework to assess and prioritize brazilian savanna environmental diversity for conservation. J Environ Manage 232:818–828

    Article  PubMed  Google Scholar 

  • Santini L, Cornulier T, Bullock JM, Palmer SC, White SM, Hodgson JA, Bocedi G, Travis JMJ (2016) A trait-based approach for predicting species responses to environmental change from sparse data: how well might terrestrial mammals track climate change? Global Change Biol 22:2415–2424

    Article  Google Scholar 

  • Sayer J, Sunderland T, Ghazoul J, Pfund JL, Sheil D, Meijaard E, Venter M, Boedhihartono AK, Day M, Garcia C, Van Oosten C (2013) Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc Natl Acad Sci USA 110:8349–8356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleicher J, Zaehringer JG, Fastré C, Vira B, Visconti P, Sandbrook C (2019) Protecting half of the planet could directly affect over one billion people. Nat Sustain 2:1094–1096

    Article  Google Scholar 

  • Scott JM, Davis F, Csuti B, Noss R, Butterfield B, Groves C, Anderson H, Caicco S, D’Erchia F, Edwards TC, Joe Ulliman RG Jr (1993) Gap analysis: a geographic approach to protection of biological diversity. Wild Monogr 123:3–41

    Google Scholar 

  • Shafer CL (2015) Cautionary thoughts on IUCN protected area management categories V–VI. Glob Ecol Conserv 3:331–348

    Article  Google Scholar 

  • Sharafi SM, Moilanen A, White M, Burgman M (2012) Integrating environmental gap analysis with spatial conservation prioritization: a case study from Victoria, Australia. J Environ Manage 112:240–251

    Article  PubMed  Google Scholar 

  • Shoreman-Ouimet E, Kopnina H (2015) Reconciling ecological and social justice to promote biodiversity conservation. Biol Conserv 184:320–326

    Article  Google Scholar 

  • Silva DC, Vieira TB, da Silva JM, de Cassia Faria K (2018) Biogeography and priority areas for the conservation of bats in the brazilian Cerrado. Biodivers Conserv 27:815–828

    Article  Google Scholar 

  • Stewart DR, Underwood ZE, Rahel FJ, Walters AW (2018) The effectiveness of surrogate taxa to conserve freshwater biodiversity. Conserv Biol 32:183–194

    Article  PubMed  Google Scholar 

  • Suwarno A, Hein L, Weikard HP, Van Noordwijk M, Nugroho B (2018) Land-use trade-offs in the Kapuas peat forest, Central Kalimantan, Indonesia. Land Use Policy 75:340–351

    Article  Google Scholar 

  • Tilman D, Clark M, Williams DR, Kimmel K, Polasky S, Packer C (2017) Future threats to biodiversity and pathways to their prevention. Nature 546:73–81

    Article  CAS  PubMed  Google Scholar 

  • Velazco SJE, Svenning JC, Ribeiro BR, Laureto LMO (2021) On opportunities and threats to conserve the phylogenetic diversity of neotropical palms. Divers Distrib 27:512–523

    Article  Google Scholar 

  • Venter O, Fuller RA, Segan DB, Carwardine J, Brooks T, Butchart SH, Di Marco M, Iwamura T, Joseph L, O’Grady D, Possingham HP, Rondinini C, Smith RJ, Venter M, Watson JE (2014) Targeting global protected area expansion for imperiled biodiversity. PLoS Biol 12:e1001891

    Article  PubMed  PubMed Central  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611

    Google Scholar 

  • Watts M, Klein CJ, Tulloch VJ, Carvalho SB, Possingham HP (2021) Software for prioritizing conservation actions based on probabilistic information. Conserv Biol 35:1299–1308

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28:199–204

    Article  PubMed  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Woodley S, Locke H, Laffoley D, MacKinnon K, Sandwith T, Smart J (2019) A review of evidence for area-based conservation targets for the post-2020 global biodiversity framework. Parks 25:31–46

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the data support of Prof. Pablo Marquet on species distribution modelling. This project was supported by the Fondo Nacional de Desarrollo Científico y Tecnológico (FUNDECYT; No. 3180028).

Author information

Authors and Affiliations

Authors

Contributions

Chun-Jing Wang and Ji-Zhong Wan contributed equally to all parts of the study. All authors contributed to subsequent drafts and gave final approval for publication.

Corresponding authors

Correspondence to Ji-Zhong Wan or Chun-Jing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

All the authors have approved the manuscript and agree with submission to your esteemed journal. There are no conflicts of interest to declare.

Ethics approval

Not Applicable.

Patient consent

Not Applicable.

Permission to reproduce material from other sources

Not Applicable.

Additional information

Communicated by David Hawksworth.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, JZ., Wang, CJ. Spatial prioritization for the conservation of terrestrial vertebrate genera in the Neotropics. Biodivers Conserv 32, 3423–3445 (2023). https://doi.org/10.1007/s10531-023-02672-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-023-02672-1

Keywords

Navigation