Skip to main content

Advertisement

Log in

Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Ecological niche modeling (ENM) has become an important tool in conservation biology. Despite its recent success, several basic issues related to algorithm performance are still being debated. We assess the ability of two of the most popular algorithms, GARP and Maxent, to predict distributions when sampling is geographically biased. We use an extensive data set collected in the Brazilian Cerrado, a biodiversity hotspot in South America. We found that both algorithms give richness predictions that are very similar to other traditionally used richness estimators. Also, both algorithms correctly predicted the presence of most species collected during fieldwork, and failed to predict species collected only in very few cases (usually species with very few known localities, i.e., <5). We also found that Maxent tends to be more sensitive to sampling bias than GARP. However, Maxent performs better when sampling is poor (e.g., low number of data points). Our results indicates that ENM, even when provided with limited and geographically biased localities, is a very useful technique to estimate richness and composition of unsampled areas. We conclude that data generated by ENM maximize the utility of existing biodiversity data, providing a very useful first evaluation. However, for reliable conservation decisions ENM data must be followed by well-designed field inventories, especially for the detection of restricted range, rare species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson RP, Peterson AT, Gómez-Laverde M (2002) Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98:3–16

    Article  Google Scholar 

  • Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232

    Article  Google Scholar 

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Global Ecol Biogeogr 16:743–753

    Article  Google Scholar 

  • Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313:1396–1397

    Article  PubMed  Google Scholar 

  • Austin MP (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200:1–19

    Article  Google Scholar 

  • Brooks TM, da Fonseca GAB, Rodrigues ASL (2004) Species, data, and conservation planning. Conserv Biol 18:1682–1688

    Article  Google Scholar 

  • Chao A, Hwang WH, Chen YC et al (2000) Estimating the number of shared species in two communities. Stat Sin 10:227–246

    Google Scholar 

  • Chazdon RL, Colwell RK, Denslow JS et al (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In: Dallmeier F, Comiskey JA (eds) Forest biodiversity research, monitoring, modeling: conceptual background, old world case studies. Parthenon Publishing, Paris, pp 285–309

    Google Scholar 

  • Colli GR, Bastos RP, Araújo AFB (2002) The character and dynamics of the Cerrado herpetofauna. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology, natural history of a neotropical Savanna. Columbia University Press, New York

    Google Scholar 

  • Colli GR, Giugliano LG, Mesquita DO et al (2009) A new species of Cnemidophorus from the Jalapão region, in the central Brazilian Cerrado. Herpetologica 65:311–327

    Article  Google Scholar 

  • Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. User’s guide and application published at http://purl.oclc.org/estimates

  • Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:2717–2727

    Article  Google Scholar 

  • Costa GC, Nogueira CC, Machado RB et al (2007) Squamate richness in the Brazilian Cerrado and its environmental–climatic associations. Divers Distrib 13:714–724

    Article  Google Scholar 

  • Costa GC, Wolfe C, Shepard DB et al (2008) Detecting the influence of climatic variables on species’ distributions: a test using GIS niche-based models along a steep longitudinal environmental gradient. J Biogeogr 35:637–646

    Article  Google Scholar 

  • Díaz-Francés E, Soberón J (2005) Statistical estimation and model selection of species-accumulation functions. Conserv Biol 19:569–573

    Article  Google Scholar 

  • Domínguez-Domínguez O, Martinez-Meyer E, Zambrano L et al (2006) Using ecological niche modeling as a conservation tool for freshwater species: live-bearing fishes in central Mexico. Conserv Biol 20:1730–1739

    Article  PubMed  Google Scholar 

  • Duellman WE (1978) The biology of an equatorial herpetofauna in Amazonian Ecuador. Miscellaneous Publications of the University of Kansas, Museum of Natural History, Lawrence, pp 1–352

  • Eken G, Bennun L, Brooks TM et al (2004) Key biodiversity areas as site conservation targets. Bioscience 54:1110–1118

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Filho GAP, Montigelli GG (2006) Geographic distribution: Hydrodynastes gigas. Herpetol Rev 37:497

    Google Scholar 

  • França FGR, Araújo AFB (2007) Are there co-occurence patterns that structure snake communities in central Brazil? Braz J Biol 67:33–40

    Article  PubMed  Google Scholar 

  • Freitas MA, Silva TFS, Rodriguez MT (2007) Geographic distribution: Chironius quadrilineatus. Herpetol Rev 38:354

    Google Scholar 

  • Garcia A (2006) Using ecological niche modelling to identify diversity hotspots for the herpetofauna of Pacific lowlands and adjacent interior valleys of Mexico. Biol Conserv 130:25–46

    Article  Google Scholar 

  • Guisan A, Broennimann O, Engler R et al (2006) Using niche-based models to improve the sampling of rare species. Conserv Biol 20:501–511

    Article  PubMed  Google Scholar 

  • Guisan A, Graham CH, Elith J et al (2007a) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340

    Article  Google Scholar 

  • Guisan A, Zimmermann NE, Elith J et al (2007b) What matters for predicting the occurrences of trees: techniques, data, or species’ characteristics? Ecol Monogr 77:615–630

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Virkkala R et al (2007) Biotic interactions improve prediction of boreal bird distributions at macro-scales. Global Ecol Biogeogr 16:754–763

    Article  Google Scholar 

  • Hernandez PA, Graham CH, Master LL et al (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biol 12:2272–2281

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hortal J, Lobo JM, Jimenez-Valverde A (2007) Limitations of biodiversity databases: case study on seed-plant diversity in Tenerife, Canary Islands. Conserv Biol 21:853–863

    Article  PubMed  Google Scholar 

  • Kadmon R, Farber O, Danin A (2004) Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol Appl 14:401–413

    Article  Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713

    Article  Google Scholar 

  • Lassueur T, Joost S, Randin CF (2006) Very high resolution digital elevation models: do they improve models of plant species distribution? Ecol Model 198:139–153

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Loiselle BA, Jorgensen PM, Consiglio T et al (2008) Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J Biogeogr 35:105–116

    Google Scholar 

  • Lomolino MV (2004) Conservation biogeography. In: Lomolino MV, Heaney LR (eds) Frontiers of biogeography: new directions in the geography of nature. Sinauer, Sunderland, pp 293–296

    Google Scholar 

  • Machado RB, Ramos Neto MB, Pereira PGP et al (2004) Estimativas de perda da área do Cerrado brasileiro. Conservation International Brasilia, Brasilia, DF

    Google Scholar 

  • Mittermeier RA, Gil PR, Hoffman M et al (2005) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions, 2nd edn. Conservation International, USA

    Google Scholar 

  • Myers N (2003) Biodiversity hotspots revisited. Bioscience 53:916–917

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Nogueira C (2001) New records of squamate reptiles in central Brazilian Cerrado II: Brasília region. Herpetol Rev 32:285–287

    Google Scholar 

  • Nogueira C, Rodrigues MT (2006) The genus Stenocercus (Squamata: Tropiduridae) in extra-amazonian Brazil, with the description of two new species. South Am J Herpetol 1:149–165

    Article  Google Scholar 

  • Nogueira C, Colli GR, Martins M (2009) Local richness and distribution of the lizard fauna in natural habitat mosaics of the Brazilian Cerrado. Austral Ecol 34:83–96

    Article  Google Scholar 

  • Parra JL, Graham CC, Freile JF (2004) Evaluating alternative data sets for ecological niche models of birds in the Andes. Ecography 27:350–360

    Article  Google Scholar 

  • Pawar S, Koo MS, Kelley C et al (2007) Conservation assessment and prioritization of areas in Northeast India: priorities for amphibians and reptiles. Biol Conserv 136:346–361

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M et al (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Peterson AT (2006) Uses and requirements of ecological niche models and related distributional models. Biodivers Inform 3:59–72

    Google Scholar 

  • Peterson AT, Nakazawa Y (2008) Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecol Biogeogr 17:135–144

    Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371

    Article  Google Scholar 

  • Peterson AT, Papes M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550–560

    Google Scholar 

  • Peterson AT, Papes M, Soberon J (2008) Rethinking receiver operating characteristics analysis applications in ecological niche modeling. Ecol Model 213:63–72

    Article  Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Dudik M, Shapire RE (2004) A maximum entropy approach to species distribution modeling. In: Greiner R, Schuurmans D (eds) Proceedings of the 21st international conference on machine learning. ACM Press Banff, Canada, pp 655–662

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Poyry J, Luoto M, Heikkinen RK et al (2008) Species traits are associated with the quality of bioclimatic models. Global Ecol Biogeogr 17:403–414

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org, ISBN 3-900051-07-0

  • Raes N, ter Steege H (2007) A null-model for significance testing of presence-only species distribution models. Ecography 30:727–736

    Article  Google Scholar 

  • Raxworthy CJ, Martinez-Meyer E, Horning N et al (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841

    Article  PubMed  CAS  Google Scholar 

  • Raxworthy CJ, Ingram CM, Rabibisoa N et al (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst Biol 56:907–923

    Article  PubMed  Google Scholar 

  • Rodrigues MT, Pavan D, Curcio FF (2007) Two new species of lizards of the genus Bachia (Squamata, Gymnophthalmidae) from central Brazil. J Herpetol 41:545–553

    Article  Google Scholar 

  • Rodrigues MT, Camacho A, Nunes PMS et al (2008) A new species of the lizard genus Bachia (Squamata: Gymnophthalmidae) from the cerrados of central Brazil. Zootaxa 1875:39–50

    Google Scholar 

  • Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568

    Article  Google Scholar 

  • Silveira AL (2007) Geographic distribution: Amphisbaena fuliginosa. Herpetol Rev 38:481

    Google Scholar 

  • Soberón J, Llorente J (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7:480–488

    Article  Google Scholar 

  • Soberón JM, Llorente JB, Onate L (2000) The use of specimen-label databases for conservation purposes: an example using Mexican Papilionid and Pierid butterflies. Biodivers Conserv 9:1441–1466

    Article  Google Scholar 

  • Soberón J, Jiménez R, Golubov J et al (2007) Assessing completeness of biodiversity databases at different spatial scales. Ecography 30:152–160

    Google Scholar 

  • Stockwell DRB, Noble IR (1992) Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Math Comput Simul 33:385–390

    Article  Google Scholar 

  • Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13

    Article  Google Scholar 

  • Strüssmann C, Carvalho MA (1998) New herpetological records for the state of Mato Grosso, western Brazil. Herpetol Rev 29:183–185

    Google Scholar 

  • Sullivan BK (1981) Distribution and relative abundance of snakes along a transect in California. J Herpetol 15:245–246

    Article  Google Scholar 

  • Trivedi MR, Berry PM, Morecroft MD et al (2008) Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Global Change Biol 14:1089–1103

    Article  Google Scholar 

  • Valdujo PH, Nogueira CC, Baumgarten L et al (2009) Squamate reptiles from Parque Nacional das Emas and surroundings, Cerrado of Central Brazil. Check List 5:405–417

    Google Scholar 

  • Whittaker RJ, Araújo MB, Paul J et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23

    Article  Google Scholar 

  • Zweig MH, Campbell G (1993) Receiver-operating characteristics (ROC) plots—a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Shepard and A. T. Peterson for comments on the manuscript. Fieldwork was funded by Conservation International—Brazil, and field support was provided by Pequi, a Brazilian nongovernmental organization. Work on PNCM was authorized by IBAMA permit # 13204-1. We thank, P. Valdujo, S. Balbino, R. Recoder, and R. Bosque for help during fieldwork. This study was submitted in partial fulfilment of GCC’s PhD degree at the University of Oklahoma. The species locality database was assembled as part of doctoral studies conducted by CN, supported by a FAPESP fellowship (# 02/00015-3). We thank J. Caldwell, M. Kaspari, J. Kelly, T. Rashed, and L. Vitt, for serving on GCC’s doctoral committee and providing comments. GCC is supported by a Fulbright/CAPES PhD fellowship (15053155-2018/04-7). GRC by CNPq grant (# 302343/88-1). Portions of this research were supported by a National Science Foundation grant to Laurie J. Vitt and Janalee P. Caldwell (DEB-0415430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel C. Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, G.C., Nogueira, C., Machado, R.B. et al. Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers Conserv 19, 883–899 (2010). https://doi.org/10.1007/s10531-009-9746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9746-8

Keywords

Navigation