Skip to main content

Advertisement

Log in

The role of landscape connectivity in maintaining pollinator biodiversity needs reconsideration

  • Review Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Despite ongoing conservation efforts, pollinator biodiversity continues to decline at unprecedented rates. Conservation approaches tend to ignore landscape connectivity and focus mainly on increasing the availability of resources. Studies often find low or no effect of landscape connectivity on pollinator biodiversity. This may lead to a conclusion that pollinator assemblages are not sensitive to changes in landscape connectivity because pollinators are mobile species that can tolerate habitat fragmentation. However, the role of landscape connectivity might be underestimated, because of a failure to capture the effect on pollinator assemblages, undermining conservation efforts. Here we discuss evidence and theory indicating that the effects of landscape connectivity are underestimated due to a lack of consideration of the multiple aspects of biodiversity, including its spatial organization, community composition, functional diversity, species evenness, extinction debt and genetic diversity; and failure to measure aspects of landscape connectivity relevant to pollinators, namely spatial scale, matrix permeability, inter-habitat type connectivity and potential role of linear elements. Currently, available empirical evidence is scarce, thus, we suggest directions of further research and new conservation efforts to focus on maintaining aspects of landscape connectivity important to pollinators.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  • Albrecht M et al (2007) The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. J Appl Ecol 44(4):813–822. https://doi.org/10.1111/j.1365-2664.2007.01306.x

    Article  Google Scholar 

  • Alison J et al (2017) Successful restoration of moth abundance and species-richness in grassland created under agri-environment schemes. Biol Conserv 213:51–58

    Article  Google Scholar 

  • Anderson BJ et al (2009) Dynamics of range margins for metapopulations under climate change. Proc R Soc B 276:1415–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archaux F, Lorel C, Villemey A (2018) Landscape drivers of butterfly and burnet moth diversity in lowland rural areas. Landsc Ecol 33:1725–1739

    Article  Google Scholar 

  • Aviron S et al (2011) Effects of wildflower strip quality, quantity, and connectivity on butterfly diversity in a swiss arable landscape. Restor Ecol 19(4):500–508

    Article  Google Scholar 

  • Ballare KM, Jha S (2021) Genetic structure across urban and agricultural landscapes reveals evidence of resource specialization and philopatry in the Eastern carpenter bee, Xylocopa virginica L. Evol Appl 14:136–149. https://doi.org/10.1111/eva.13078

    Article  CAS  PubMed  Google Scholar 

  • Banaszak-Cibicka W, Ratyńska H, Dylewski L (2016) Features of urban green space favourable for large and diverse bee populations. Urban Forestry & Urban Greening 20:448–452

    Article  Google Scholar 

  • Baudry J et al (2003) Temporal variability of connectivity in agricultural landscapes: do farming activities help? Landsc Ecol 18(3):303–314. https://doi.org/10.1023/A:1024465200284

    Article  Google Scholar 

  • Baxter-Gilbert JH et al (2015) Road mortality potentially responsible for billions of pollinating insect deaths annually. J Insect Conserv 19(5):1029–1035. https://doi.org/10.1007/s10841-015-9808-z

    Article  Google Scholar 

  • Belisle M (2005) Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86(8):1988–1995

    Article  Google Scholar 

  • Bergman K-O et al (2004) Landscape effects on butterfly assemblages in agricultural region. Ecography 27:619–628

    Article  Google Scholar 

  • Betts MG, Hadley AS, Kormann U (2019) The landscape ecology of pollination. Landsc Ecol 34:961–966

    Article  Google Scholar 

  • Bhattacharya M, Primack RB, Gerwein J (2003) Are roads and railroads barriers to bumblebee movement in a temperate suburban conservation area? Biol Conserv 109(1):37–45. https://doi.org/10.1016/S0006-3207(02)00130-1

    Article  Google Scholar 

  • Black SH, Shepherd M, Vaughan M (2011) Rangeland management for pollinators. Rangelands 33(3):9–13

    Article  Google Scholar 

  • Blaum N et al (2012) Climate induced changes in matrix suitability explain gene flow in a fragmented landscape—the effect of interannual rainfall variability. Ecography 35(7):650–660. https://doi.org/10.1111/j.1600-0587.2011.07154.x

    Article  Google Scholar 

  • Blitzer EJ et al (2012) Spillover of functionally important organisms between managed and natural habitats. Agr Ecosyst Environ 146(1):34–43. https://doi.org/10.1016/j.agee.2011.09.005

    Article  Google Scholar 

  • Bluthgen N, Klein A-M (2011) Functional complementarity and specialization: the role of biodiversity in plant–pollinator interactions. Basic Appl Ecol 12(4):282–291

    Article  Google Scholar 

  • BMU (Bundesministerium für Umwelt) (2019) Aktionsprogramm Insektenschutz. Gemeinsam wirksam gegen das Insektensterben. Bundesministerium für Umwelt, Berlin.

  • Bommarco R et al (2014) Extinction debt for plants and flower-visiting insects in landscapes with contrasting land use history. Divers Distrib 20(5):591–599

    Article  Google Scholar 

  • Brittain C et al (2013) Synergistic effects of non-Apis bees and honey bees for pollination services. Proc R Soc B. https://doi.org/10.1098/rspb.2012.2767

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruckmann S, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity. J Appl Ecol 47:799–809

    Article  Google Scholar 

  • Campbell JW et al (2018) The effects of repeated prescribed fire and thinning on bees wasps and other flower visitors in the understory and midstory of a temperate forest in North Carolina. For Sci 64(3):299–306. https://doi.org/10.1093/forsci/fxx008

    Article  Google Scholar 

  • Cavender-Bares J et al (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12(7):693–715

    Article  PubMed  Google Scholar 

  • CBD (2016) Implications of the IPBES Assessment on Pollination and Food Production for the Work of the Convention. CBD. Conference of the Parties on Biological Diversity. Thirteenth Meeting, Cancun, Mexico: 4–17 December 2016. J Anim Ecol 70:410–425

    Google Scholar 

  • Chapin FS et al (2000) Consequences of changing biodiversity. Nature 443:989–992

    Google Scholar 

  • Cole LJ et al (2015) Riparian buffer strips: their role in the conservation of insect pollinators in intensive grassland systems. Agr Ecosyst Environ 211:207–2020

    Article  Google Scholar 

  • Concepción ED, Díaz M, Baquero RA (2008) Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landsc Ecol 23(2):135–148. https://doi.org/10.1007/s10980-007-9150-2

    Article  Google Scholar 

  • Cook WM et al (2002) Island theory matrix effects and species richness patterns in habitat fragments. Ecol Lett 5(5):619–623. https://doi.org/10.1046/j.1461-0248.2002.00366.x

    Article  Google Scholar 

  • Cowley MJR et al (2001) Density—distribution relationships in British butterflies. I. The effect of mobility and spatial scale. J Anim Ecol 70:410–425

    Article  Google Scholar 

  • Cushman SA et al (2006) Gene-flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Cusser S, Neff JL, Jha S (2015) Land use change and pollinator extinction debt in exurban landscapes. Insect Conserv Divers 8:562–572

    Article  Google Scholar 

  • Davis ES et al (2010) Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes Floralis. Mol Ecol 19:4922–4935

    Article  PubMed  Google Scholar 

  • Debinsky DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14(2):342–355

    Article  Google Scholar 

  • Denning KR, Foster BL (2018) Taxon specific associations of tallgrass praire flower visitors with site-scale forb communities and landscape composition and configuration. Biol Conserv 227:74–81

    Article  Google Scholar 

  • Dennis B (2002) Allee effects in stochastic populations. Oikos 96:389–401

    Article  Google Scholar 

  • Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102(2):417–426

    Article  Google Scholar 

  • Desmet PG (2018) Using landscape fragmentation thresholds to determine ecological process targets in systematic conservation plans. Biol Conserv 221:257–260

    Article  Google Scholar 

  • Dicks LV, Showler DA, Sutherland WJ (2010) Bee conservation: evidence for the effects of interventions. Synthesis of conservation evidence series. Pelagic Publishing, Exeter

    Google Scholar 

  • Diekotter T, Billeter R, Crist TO (2008) Effects of landscape connectivity on spatial distribution of insect diversity in agricultural mosaic landscapes. Basic Appl Ecol 9:298–307

    Article  Google Scholar 

  • Doerr VAJ, BarrettDoerr TED (2011) Connectivity, dispersal behaviour and conservation under climate change: a response to Hodgson. J Appl Ecol 48(1):143–147

    Article  Google Scholar 

  • Donald PF, Evans AD (2006) Habitat connectivity and matrix restoration: the wider implications of agri-environment schemes. J Appl Ecol 43(2):209–218. https://doi.org/10.1111/j.1365-2664.2006.01146.x

    Article  Google Scholar 

  • Dreisig H (1995) Thermoregulation and flight activity in territorial-male graylings, Hipparchia semele (Satyridae), and large skippers, Ochlodes venata (Hesperiidae). Oecologia 101:169–176

    Article  CAS  PubMed  Google Scholar 

  • Driscoll DA et al (2013) Conceptual domain of matrix in fragmented landscapes. Trends Ecol Evol 28(10):605–613. https://doi.org/10.1016/j.tree.2013.06.010

    Article  PubMed  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65(1):169–175

    Article  Google Scholar 

  • Eremeeva NI, Sushchev DV (2005) Structural changes in the fauna of pollinating insects in urban landscapes. Russ J Ecol 36(4):259–265

    Article  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81(1):117–142

    Article  PubMed  Google Scholar 

  • Ewers RM, Didham RK (2007) The effect of fragment shape and species` sensitivity to habitat edges on animal population size. Conserv Biol 21:926–936

    Article  PubMed  Google Scholar 

  • Eycott A et al (2010) Do landscape matrix features affect species movement. CEE review 08-006. Colab Environ Evid 1–119

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 43(1):487–515

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 43(1):1–23

    Article  Google Scholar 

  • Filz KJ et al (2013) Missing the target? A critical view on butterfly conservation efforts on calcareous grasslands in south-western. Germany Biodivers Conserv 22(10):2223–2241. https://doi.org/10.1007/s10531-012-0413-0

    Article  Google Scholar 

  • Fischer LK et al (2016) Disentangling urban habitat and matrix effects on wild bee species. PeerJ 4:e2729. https://doi.org/10.7717/peerj.2729

    Article  PubMed  PubMed Central  Google Scholar 

  • Fletcher RJ Jr (2005) Multiple edge effects and their implications in fragmented landscapes. J Anim Ecol 74:342–352

    Article  Google Scholar 

  • Flick T, Feagan S, Fahrig L (2012) Effects of landscape structure on butterfly species richness and abundance in agricultural landscapes in eastern Ontario, Canada. Agric Ecosyst Environ 156:123–133

    Article  Google Scholar 

  • Francuski L, Ludoški J, Milankov V (2013) Phenotypic diversity and landscape genetics of Eristalis tenax in a spatially heterogeneous environment, durmitor mountain (Montenegro). Ann Zool Fenn 50(5):262–278

    Article  Google Scholar 

  • Froidevaux JSP et al (2019) Moth responses to sympathetic hedgerow management in temperate farmland. Agr Ecosyst Environ 270–271:55–64

    Article  Google Scholar 

  • Fuentes-Montemayor E et al (2012) Factors influencing moth assemblages in woodland fragments on farmland: implications for woodland management and creation schemes. Biol Conserv 153:265–275

    Article  Google Scholar 

  • Fuller L et al (2017) Local scale attributes determine the stability of woodland creation sites for Diptera. J Appl Ecol 55:1173–1184

    Article  Google Scholar 

  • Gao J, Barzel B, Barabási AL (2016) Universal resilience patterns in complex networks. Nature 530(7590):307–312. https://doi.org/10.1038/nature16948

    Article  CAS  PubMed  Google Scholar 

  • Garibaldi LA et al (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14(10):1062–1072

    Article  PubMed  Google Scholar 

  • Gathmann A, Tscharntke T (2002) Foraging ranges for solitary bees. J Anim Ecol 71:757–764

    Article  Google Scholar 

  • Gilory JJ, Sutherland WJ (2007) Beyond ecological traps: perceptual errors and undervalued resources. Trends Ecol Evol 22(7):351–355. https://doi.org/10.1016/j.tree.2007.03.014

    Article  Google Scholar 

  • Goddard MA, Dougill AJ, Benton TG (2010) Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol Evol 25(2):90–98

    Article  PubMed  Google Scholar 

  • Gonzolez A, Thompson P, Loreau M (2017) Spatial ecological networks: planning for sustainability in long term. Curr Opin Environ Sustain 29:187–197

    Article  Google Scholar 

  • Goodwin BJ, Fahrig L (2002) How does landscape structure influence landscape connectivity? Oikos 99(3):552–570. https://doi.org/10.1034/j.1600-0706.2002.11824.x

    Article  Google Scholar 

  • Gotelli NJ (1991) Metapopulation models: the rescue effect, propagule rain, and the core-satellite hypothesis. Am Nat 138:768–776

    Article  Google Scholar 

  • Gounand I et al (2018) Meta-ecosystems 2.0: rooting the theory into the field. Trends Ecol Evol 33(1):36–46

    Article  PubMed  Google Scholar 

  • Graham L et al (2018) The influence of hedgerow structural condition on wildlife habitat provision in farmed landscapes. Biol Conserv 220:122–131. https://doi.org/10.1016/j.biocon.2018.02.017

    Article  Google Scholar 

  • Van Greet A et al (2010) Do linear landscape elements in farmland act as biological corridors for pollen dispersal? J Ecol 98(1):178–187

    Article  Google Scholar 

  • Grubisic M et al (2018) Insect declines in agroecosystems: does light pollution matter? Ann Appl Biol 173(2):180–189

    Article  Google Scholar 

  • Gökyer E (2013) Understanding landscape structure using landscape metrics. Chapter 25 In: Özyavuz M (ed) Advances in landscape architecture, pp 663–676. InTech

  • Habel JC et al (2015) Fragmentation genetics of the grassland butterfly Polyommatus coridon: stable genetic diversity or extinction debt? Conserv Genet 16:549–558

    Article  CAS  Google Scholar 

  • Haddad NM et al (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052–e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Haddad NM et al (2017) Experimental evidence does not support the habitat amount hypothesis. Ecography 40:48–55

    Article  Google Scholar 

  • Haenke S et al (2014) Landscape configuration of crops and hedgerows drives local syrphid fly abundance. J Appl Ecol 51(2):505–513. https://doi.org/10.1111/1365-2664.12221

    Article  Google Scholar 

  • Hallmann CA et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12(10):1–21

    Article  Google Scholar 

  • Hamm M, Drossel B (2017) Habitat heterogeneity hypothesis and edge effects in model metacommunities. J Theoret Biol 426:40–48. https://doi.org/10.1016/j.jtbi.2017.05.022

  • Hansen AJ, DeFries R (2007) Ecological mechanisms linking protected areas to surrounding lands. Ecol Appl 17(4):974–988

    Article  PubMed  Google Scholar 

  • Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42:989–993

    Article  Google Scholar 

  • Hanski I, Ovaskinen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758

    Article  CAS  PubMed  Google Scholar 

  • Hanski I, Ovaskinen O (2002) Extinction debt and extinction threshold. Conserv Biol 16:665–673

    Article  Google Scholar 

  • Happe A-K et al (2018) Small scale agricultural landscapes and organic management support wild bee communities. Agr Ecosyst Environ 254:92–98

    Article  Google Scholar 

  • Harrison T, Gibbs J, Winfree R (2017) Forest bees are replaced in agricultural and urban landscapes by native species with different phonologies and life-history traits. Glob Change Biol 24:287–296

    Article  Google Scholar 

  • Hass AL et al (2018) Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proc R Soc B 285:20172242

    Article  PubMed  PubMed Central  Google Scholar 

  • Hastings A (1980) Disturbance, coexistence, history, and competition for space. Theor Popul Biol 12:237–266

    Google Scholar 

  • Henderickx F et al (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351

    Article  Google Scholar 

  • Herrault P-A et al (2016) Combined effects of area, connectivity, history and heterogeneity of woodlands on the species richness of hoverflies (Diptera : Syrphidae). Landsc Ecol 31(4):877–893

    Article  Google Scholar 

  • Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89(6):1510–1520

    Article  PubMed  Google Scholar 

  • Hinners SJ, Kearns CA, Wessman CA (2012) Roles of scale matrix and native habitat in supporting a diverse suburban pollinator assemblage. Ecol Appl 22(7):1923–1935. https://doi.org/10.1890/11-1590.1

    Article  PubMed  Google Scholar 

  • Hodgson JA et al (2011) Habitat area, quality and connectivity: striking the balance for efficient conservation. J Appl Ecol 48:148–152

    Article  Google Scholar 

  • Hoehn P et al (2008) Functional group diversity of bee pollinators increases crop yield. Proc R Soc B 275:2283–2291

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland JM et al (2017) Semi-natural habitats support biological control pollination and soil conservation in Europe. A Rev Agron Sustain Dev. https://doi.org/10.1007/s13593-017-0434-x

    Article  Google Scholar 

  • Holzschuh A, Steffan-Dewenter I, Tscharntke T (2010) How do landscape composition and configuration, organic farming and fallow strips affect diversity of bees, wasps and their parasitoids? J Anim Ecol 79:491–500

    Article  PubMed  Google Scholar 

  • Holzschuh A et al (2011) Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proc R Soc B 278:3444–3451

    Article  PubMed  PubMed Central  Google Scholar 

  • Holzschuh A et al (2013) Mass-flowering crops enhance wild bee abundance. Oecologia 172:477–484

    Article  PubMed  Google Scholar 

  • Hopfenmuller S, Steffan-Dewenter I, Holzschuh A (2014) Trait-specific responses of wild bee communities to landscape composition configuration and local factors. PLoS ONE 9(8):e104439

    Article  PubMed  PubMed Central  Google Scholar 

  • Hufbauer RA et al (2015) Three types of rescue can avert extinction in a changing environment. Proc Natl Acad Sci 112(33):10557–10562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hylander K, Ehrlen J (2013) The mechanisms causing extinction debts. Trends Ecol Evol 28(6):341–346

    Article  PubMed  Google Scholar 

  • IPBES (2016) Thematic assessment on pollinators, pollination and food production (deliverable 3(a)): individual chapters and their executive summaries. Annex to document IPBES/4/INF/1/Rev.1.

  • Jackson ND, Fahrig L (2014) Landscape context affects genetic diversity at a much larger spatial extent than population abundance. Ecology 95(4):871–881

    Article  PubMed  Google Scholar 

  • Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25(3):153–160

    Article  PubMed  Google Scholar 

  • Jackson JM et al (2018) Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. Mol Ecol 27:2926–2942

    Article  PubMed  Google Scholar 

  • Jaffe R et al (2016) Landscape genetics of a tropical rescue pollinator. Conserv Genet 17:267–278

    Article  Google Scholar 

  • Jangjoo M et al (2016) Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network. PNAS 113(39):10914–10919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jauker F et al (2009) Pollinator dispersal in agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc Ecol 24:547–555

    Article  Google Scholar 

  • Jauker B et al (2013) Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landsc Ecol 28(1):107–120. https://doi.org/10.1007/s10980-012-9820-6

    Article  Google Scholar 

  • Jha S (2015) Contemporary human-altered landscapes and oceanic barriers reduce bumble bee gene flow. Mol Ecol 24:993–1006

    Article  CAS  PubMed  Google Scholar 

  • Jha S, Kremen C (2013) Urban land use limits regional bumble bee gene flow. Mol Ecol 22(9):2483–2495

    Article  PubMed  Google Scholar 

  • Johansson V et al (2018) Estimates of accessible food resources for pollinators in urban landscapes should take landscape friction into account. Ecosphere 9(10):e02486. https://doi.org/10.1002/ecs2.2486

    Article  Google Scholar 

  • Kallioniemi E et al (2017) Local resources, linear elements and mass-flowering crops determine bumblebee occurrences in moderately intensified farmlands. Agr Ecosyst Environ 239:90–100

    Article  Google Scholar 

  • Kammer AE, Heinrich B (1978) Insect flight metabolism. Adv Insect Physiol 13:133–228. https://doi.org/10.1016/S0065-2806(08)60266-0

    Article  CAS  Google Scholar 

  • Kelemen EP, Rehan SM (2021) Conservation insights from wild bee genetic studies: geographic differences, susceptibility to inbreeding, and signs of local adaptation. Evol Appl 14(6):1485–1496. https://doi.org/10.1111/eva.13221

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy CM et al (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16(5):584–599

    Article  PubMed  Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890. https://doi.org/10.1007/s10980-008-9245-4

    Article  Google Scholar 

  • Kissling WD, Pattemore DE, Hagen M (2014) Challenges and prospects in the telemetry of insects. Biol Rev 89(3):511–530

    Article  Google Scholar 

  • Kleijn D, van Langevelde F (2006) Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic Appl Ecol 7:201–2014

    Article  Google Scholar 

  • Kleyer M et al (2007) Mosaic cycles in agricultural landscapes of Northwest Europe. Basic Appl Ecol 8(4):295–309. https://doi.org/10.1016/j.baae.2007.02.002

    Article  Google Scholar 

  • Kormann U et al (2015) Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Divers Distrib 21:1204–1217

    Article  Google Scholar 

  • Kramer B et al (2012) Effects of landscape and habitat quality on butterfly communities in pre-alpine calcerous grasslands. Biol Conserv 152:253–261

    Article  Google Scholar 

  • Kremen C, M’Gonigle LK (2015) EDITOR’S CHOICE: small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J Appl Ecol 52(3):602–610. https://doi.org/10.1111/1365-2664.12418

    Article  Google Scholar 

  • Krewenka KM et al (2011) Landscape elements as potential barriers and corridors for bees, wasps and parasitoids. Biol Conserv 144:1816–1825

    Article  Google Scholar 

  • Kupfer JA (2012) Landscape ecology and biogeography: rethinking landscape metrics in a post-FRAGSTATS landscape. Prog Phys Geogr 36(3):400–420

    Article  Google Scholar 

  • Kuussaari M et al (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24(10):564–570. https://doi.org/10.1016/j.tree.2009.04.011

    Article  PubMed  Google Scholar 

  • Landis DA (2017) Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl Ecol 18:1–12

    Article  Google Scholar 

  • Lanuza JB, Allen-Perkins A, Bartomeus I (2022) The non-random assembly of functional motifs in plant-pollinator networks. BioRxiv. https://doi.org/10.1101/2022.04.06.486621

    Article  Google Scholar 

  • Larsen TH, Williams LM, Kremen C (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett 8:538–547

    Article  PubMed  Google Scholar 

  • Leibold MA et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Lever JJ et al (2014) The sudden collapse of pollinator communities. Ecol Lett 17(3):350–359. https://doi.org/10.1111/ele.12236

    Article  PubMed  Google Scholar 

  • Levin SA (1974) Dispersion and population interactions. Am Nat 108:207–225. https://doi.org/10.1086/282900

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Lindenmayer DB, Fischer J (2007) Tackling the landscape fragmentation panchreston. Trends Ecol Evol 22:127–132

    Article  PubMed  Google Scholar 

  • Lintott PR et al (2014) Moth species richness, abundance and diversity in fragmented urban woodlands. Biodivers Conserv 23:2875–2901

    Article  Google Scholar 

  • Lizée M-H et al (2012) Matrix configuration and patch isolation influences override the species-area relationship for urban butterfly communities. Landsc Ecol 27:159–169

    Article  Google Scholar 

  • Logue JB et al (2011) Empirical approaches to meta-communities: a review and comparison with theory. Trends Ecol Evol 26(9):482–491

    Article  PubMed  Google Scholar 

  • Loreau M, Mouquet N, Gonzalez A et al (2003a) Biodiversity as a spatial insurance in heterogeneous landscapes. Proc Natl Acad Sci 100(22):12765–12770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreau M, Mouquet N, Holt RD (2003b) Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol Lett 6(8):673–679

    Article  Google Scholar 

  • López-Uribe MM et al (2015) Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape. PLoS ONE 10(5):e0125719

    Article  PubMed  PubMed Central  Google Scholar 

  • Löffler F et al (2020) Extinction debt across three taxa in well-connected calcareous grasslands. Biol Conserv 246:108588

    Article  Google Scholar 

  • MacArthur RH, Levins R (1967) The limiting similarity convergence and divergence of coexisting species. Am Nat 101(921):377–385. https://doi.org/10.1086/282505

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of Island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • MacDonald ZG et al (2018) Decoupling habitat fragmentation from habitat loss: butterfly species mobility obscures fragmentation effects in a naturally fragmented landscape of the lake islands. Oecologia 186:11–27

    Article  PubMed  Google Scholar 

  • Mandelik Y et al (2012) Complementary habitat use by wild bees in agro-natural landscapes. Ecol Appl 22(5):1535–1546

    Article  PubMed  Google Scholar 

  • Marini L et al (2014) Contrasting effects of area and connectivity on evenness of pollinator communities. Ecography 37:544–551

    Article  Google Scholar 

  • Maskell LC et al (2019) Exploring relationships between land use intensity, habitat heterogeneity and biodiversity to identify and monitor areas of high nature value farming. Biol Conserv 231:30–38

    Article  Google Scholar 

  • Massol F et al (2011) Linking community and ecosystem dynamics through spatial ecology. Ecol Lett 14:313–323

    Article  PubMed  Google Scholar 

  • Metzger JP, Decamps H (1997) The structural connectivity threshold: an hypotheses in conservation biology at the landscape scale. Acta Ecol 18:1–12

    Article  Google Scholar 

  • Miller-Struttmann NE et al (2017) Flight of the bumble bee: buzzes predict pollination services. PLoS ONE 12:e0179273

    Article  PubMed  PubMed Central  Google Scholar 

  • Mola JM et al (2021) Long-term surveys support declines in early season forest plants used by bumblebees. J Appl Ecol 58(7):1431–1441. https://doi.org/10.1111/1365-2664.13886

    Article  Google Scholar 

  • Moquet N et al (2018) Conservation of hoverflies (Diptera, Syrphidae) requires complementary resources at the landscape and local scales. Insect Conserv Divers 11(1):72–87

    Article  PubMed  Google Scholar 

  • Mora A, Wilby A, Menéndez R (2022) Abandonment of cultural landscapes: butterfly communities track the advance of forest over grasslands. J Insect Conserv Volu 26:85–96

    Article  Google Scholar 

  • Morandin LA, Kremen C (2013) Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol Appl 23:829–839

    Article  PubMed  Google Scholar 

  • Moritz C et al (2013) Disentangling the role of connectivity, environmental filtering, and spatial structure in metacommunity dynamics. Oikos 122(10):1401–1410

    Google Scholar 

  • Mouchet MA et al (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24(4):867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x

    Article  Google Scholar 

  • Mouquet N, Loreau M (2003) Community patterns in source-sink metacommunities. Am Nat 162(5):544–557

    Article  PubMed  Google Scholar 

  • Mouquet N et al (2006) Consequences of varying regional heterogeneity in source-sync metacommunities. Oikos 113:481–488

    Article  Google Scholar 

  • Mouquet L et al (2018) Conservation of hoverflies (Diptera, Syrphidae) requires complementary resources at a landscape and local scales. Insect Conserv Divers 11:72–87

    Article  Google Scholar 

  • NPGN (The National Pollinator Garden Network) (2019) Million pollinator garden challenge. The National Pollinator Garden Network. https://www.millionpollinatorgardens.org. Accessed 10 May 2019.

  • Öckinger E, Smith H (2007) Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J Appl Ecol 44:50–59

    Article  Google Scholar 

  • Öckinger E et al (2009a) Mobility dependent effects on species richness in fragmented landscapes. Basic Appl Ecol 10:573–578

    Article  Google Scholar 

  • Öckinger E, Dannestam A, Smith HG (2009b) The importance of fragmentation and habitat quality of urban grasslands for butterfly biodiversity. Landsc Urban Plan 93:31–37

    Article  Google Scholar 

  • Öckinger E et al (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979

    PubMed  Google Scholar 

  • Öckinger E et al (2018) Mobility and resource use influence the occurance of pollinating insects in restored seminatural grassland fragments. Restor Ecol 26(5):873–881

    Article  Google Scholar 

  • Olesen JM et al (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104(50):19891–19896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120(3):321–326

    Article  Google Scholar 

  • Opdam P, Steingröver E, Van Rooij S (2006) Ecological networks: a spatial concept for multi-actor planning of sustainable landscapes. Landsc Urban Plan 75:322–332

    Article  Google Scholar 

  • Ouin A et al (2006) The species-area relationship in the hoverfly (Diptera, Syrphidae) communities of forest fragments in southern France. Ecography 29:183–190

    Article  Google Scholar 

  • Ovaskinen O, Hanski I (2002) Transient dynamics in metapopulation response to perturbation. Theor Popul Biol 61:285–295

    Article  Google Scholar 

  • Papanikolaou AD et al (2017) Semi-natural habitats mitigate the effects of temperature rise on wild bees. J Appl Ecol 54(2):527–536. https://doi.org/10.1111/1365-2664.12763

    Article  Google Scholar 

  • Pla-Narbona C et al (2022) Butterfly biodiversity in the city is driven by the interaction of the urban landscape and species traits: a call for contextualised management. Landsc Ecol 37:81–92. https://doi.org/10.1007/s10980-021-01347-y(0123456789(),-volV()0123458697

    Article  Google Scholar 

  • Pollinator Health Taskforce (PHT) (2015) National strategy to promote the health of honey bees and other pollinators. Washington, The White House, May 19, 2015.

  • Pont MB et al (2017) Integrating visibility graph analysis (VGA) with connectivity analysis in landscape ecology. In: Heitor T et al (eds) Proceedings of the 11th international space syntax symposium. Instituto Superior Tecnico, Portugal.

  • Popov S et al (2017) Phytophagous hoverflies (Diptera: Syrphidae) as indicators of changing landscapes. Community Ecol 18(3):287–294

    Article  Google Scholar 

  • Potts S et al (2015) Status and trends of European pollinators. Key findings of the STEP project. Pensoft Publishers, Sofia, p 72

    Google Scholar 

  • Powney GD et al (2019) Widespread losses of pollinating insects in Britain. Nat Commun 10(1):1018–1024

    Article  PubMed  PubMed Central  Google Scholar 

  • Pöyry J et al (2009) Relative contributions of local and regional factors to species richness and total density of butterflies and moths in semi-natural grasslands. Oecologia 160:577–587

    Article  PubMed  Google Scholar 

  • Proesmans W et al (2019) Small forest patches as pollinator habitat: oases in an agricultural desert? Landsc Ecol 34(3):487–501. https://doi.org/10.1007/s10980-019-00782-2

    Article  Google Scholar 

  • Rader R et al (2016) Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci USA 213(1):146–151

    Article  Google Scholar 

  • Ranius T et al (2011) How frequent is metapopulation structure among butterflies in grasslands? Occurance patterns in forest-dominated landscape in southern Sweden. Ecoscience 18(2):138–144

    Article  Google Scholar 

  • Renaud P-C et al (2018) Towards a meta-social-ecological system prospective: a response to Gounand et al. Trends Ecol Evol 33(7):481–482.

  • Ricketts TH, Williams NM, Mayfield MM (2006) Connectivity and ecosystem services: crop pollination in agricultural landscapes. In: Sanjayan M, Crooks K et al (eds) Connectivity for conservation. Cambridge University Press, Cambridge, pp 255–289

    Chapter  Google Scholar 

  • Ries L, Sisk TD (2008) Butterfly edge effects are predicted by a simple model in a complex landscape. Oecologia 156(1):75–86

    Article  PubMed  Google Scholar 

  • Rollin O et al (2019) Preserving habitat quality at local and landscape scales increases wild bee diversity in intensive farming system. Agr Ecosyst Environ 275:73–80

    Article  Google Scholar 

  • Rossi J-P, van Halder I (2010) Towards indicators of butterfly biodiversity based on multi-scale landscape description. Ecol Interact 10:452–458

    Google Scholar 

  • Rüter S et al (2014) Transboundary ecological networks as an adaptation strategy to climate change: the example of the Dutch—German border. Basic Appl Ecol 8:639–650

    Article  Google Scholar 

  • Sang A et al (2010) Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biol Conserv 143:1405–1413

    Article  Google Scholar 

  • Santiago-Freijanes JJ et al (2018) Understanding agroforestry practices in Europe through landscape features policy promotion. Agrofor Syst 92(4):1105–1115. https://doi.org/10.1007/s10457-018-0212-z

    Article  Google Scholar 

  • Saunders ME (2018) Insect pollinators collect pollen from wind-pollinated plants: implications for pollination ecology and sustainable agriculture. Insect Conserv Divers 11(1):13–31. https://doi.org/10.1111/icad.12243

    Article  Google Scholar 

  • Scherber C, Beduschi T, Tscharntke T (2019) Novel approaches to sampling pollinators in whole landscapes: a lesson for landscape-wide biodiversity monitoring. Landsc Ecol 34:1057–1067

    Article  Google Scholar 

  • Schlaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 17(10):474–480

    Article  Google Scholar 

  • Schouten C et al (2018) NL pollinator strategy “bed and breakfast for bees.” Gov Neth Rep 22(01):2018

    Google Scholar 

  • Schtickzelle N, Baguette M (2003) Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration-patch area relationships in fragmented landscapes. J Anim Ecol 72:533–545

    Article  PubMed  Google Scholar 

  • Schweiger O et al (2005) Quantifying the impact of environmental factors on anthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42:1129–1139

    Article  Google Scholar 

  • Sih A, Ferrari MCO, Harris DJ (2011) Evolution and behavioural responses to human-induced rapid evolutionary change. Evol Appl 4(2):367–387

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson DT et al (2021) Many bee species, including rare species, are important for function of entire plant–pollinator networks. Proc R Soc B 289:20212689. https://doi.org/10.1098/rspb.2021.2689

    Article  Google Scholar 

  • Slade ME et al (2013) Life-history traits and landscape characteristics predict macro-moth responses to forest fragmentation. Ecology 95(7):1519–1530

    Article  Google Scholar 

  • Slancarova J et al (2014) Does the surrounding landscape heterogeneity affect the butterflies of insular grassland reserves? A contrast between composition and configuration. J Insect Conserv 18:1–12

    Article  Google Scholar 

  • Sõber V et al (2020) Forest proximity supports bumblebee species richness and abundance in hemi-boreal agricultural landscape. Agr Ecosyst Environ 298:106961

    Article  Google Scholar 

  • Socolar JB et al (2016) How should beta-diversity inform biodiversity conservation? Trends Ecol Evol 31(1):67–79

    Article  PubMed  Google Scholar 

  • Soga M, Koike S (2013) Mapping the potential extinction debt of butterflies in a modern city: implications for conservation priorities in urban landscapes. Anim Conserv 16:1–11

    Article  Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. PNAS 101(42):15261–15264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sponsler DB et al (2019) Pesticides and pollinators: a socioecological synthesis. Sci Total Environ 662:1012–1027. https://doi.org/10.1016/j.scitotenv.2019.01.016

    Article  CAS  PubMed  Google Scholar 

  • Steffen-Dewenter I (2003) Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows. Conserv Biol 17(4):1036–1044

    Article  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440

    Article  CAS  PubMed  Google Scholar 

  • Steffen-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3:449–456

    Article  Google Scholar 

  • Sullivan MJP et al (2017) A national scale model of linear features improves predictions of farmland biodiversity. J Appl Ecol 54:1776–1784

    Article  PubMed  PubMed Central  Google Scholar 

  • Sweaney N, Lindenmayer DB, Driscoll DA (2014) Is the matrix important to butterflies in fragmented landscapes? J Insect Conserv 18(3):283–294. https://doi.org/10.1007/s10841-014-9641-9

    Article  Google Scholar 

  • Tadey M (2015) Indirect effects of grazing intensity on pollinators and floral visitation. Ecol Entomol 40(4):451–460. https://doi.org/10.1111/een.12209

    Article  Google Scholar 

  • Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19. https://doi.org/10.1034/j.1600-0706.2000.900102.x

    Article  Google Scholar 

  • Tischendorf L, Fahrig L (2001) On the use of connectivity measures in spatial ecology. A Reply. Oikos 95(1):152–155

    Article  Google Scholar 

  • Torok E, Galle R, Batary P (2022) Fragmentation of forest-steppe predicts functional community composition of wild bee and wasp communities. Global Ecol Conserv 33:e01988. https://doi.org/10.1016/j.gecco.2021.e01988

    Article  Google Scholar 

  • Tscharntke T et al (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Tucker EM, Rehan SM (2016) Wild bee pollination networks in northern New England. J Insect Conserv 20:325–337

    Article  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–179

    Article  Google Scholar 

  • Underwood E, Darwin G, Gerritsen E (2017) Pollinator initiatives in EU Member States: success factors and gaps. Report for European Commission under contract for provision of technical support related to Target 2 of the EU Biodiversity Strategy to 2020—maintaining and restoring ecosystems and their services ENV.B2/SER/2016/2018. Institute for European Environmental Policy, Brussels.

  • Uuemaa E, Mander Ü, Marja R (2013) Trends in the use of landscape spatial metrics as landscape indicators: a review. Ecol Ind 28:100–106

    Article  Google Scholar 

  • Vallend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 86(2):183–206

    Article  Google Scholar 

  • Van Den Berge S et al (2018) Species diversity pollinator resource value and edibility potential of woody networks in the countryside in northern Belgium. Agric Ecosyst Environ 259:119–126. https://doi.org/10.1016/j.agee.2018.03.008

    Article  Google Scholar 

  • van Halder I et al (2015) Woodland habitat quality prevails over fragmentation for shaping butterfly diversity in decidous forest remnants. Forest Ecol Manag 171–180.

  • Vasiliev D, Greenwood S (2020) Pollinator biodiversity and crop pollination in temperate ecosystems, implications for national pollinator conservation strategies: mini review. Sci Total Environ 744:140880

    Article  CAS  PubMed  Google Scholar 

  • Vasseur C et al (2013) The cropping systems mosaic: How does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric Ecosyst Environ 166:3–14. https://doi.org/10.1016/j.agee.2012.08.013

    Article  Google Scholar 

  • Viljur M-L, Teder T (2018) Disperse or die: colonisation of transient open habitats in production forests is only weakly dispersal-limited in butterflies. Biol Conserv 2018:32–40

    Article  Google Scholar 

  • Villemey A et al (2015) Mosaic of grasslands and woodlands is more effective than habitat connectivity to conserve butterflies in French farmland. Biol Cnserv 191:206–215

    Article  Google Scholar 

  • Wallberg A et al (2014) A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet 46(10):1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Loreau M (2014) Ecosystem stability in space: α, β and γ variability. Ecol Lett 17(8):891–901

    Article  PubMed  Google Scholar 

  • Warzecha D et al (2021) Spatial configuration and landscape context of wildflower areas determine their benefits to pollinator a- and b-diversity. Basic Appl Ecol 56:335–344

    Article  Google Scholar 

  • Watanabe ME (1994) Pollinator worries rise as honey bees decline. Science 265:1170

    Article  CAS  PubMed  Google Scholar 

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2006) Bumblebees experience landscapes at different spatial scales: possible implications for coexistence. Oecologia 149:289–300

    Article  PubMed  Google Scholar 

  • Westrich P (1996) Habitat requirements of central European bees and the problem of partial habitats. In: Matheson A et al (eds) The conservation of bees, pp 63–80. Linnean Society of London and the International Bee Research Association, Academic Press, Cambridge

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21(2/3):213–251

    Article  Google Scholar 

  • Willmer PG, Finlayson K (2014) Big bees do a better job: intraspecific size variation influences pollination effectiveness. J Pollinat Ecol 14(23):244–254

    Article  Google Scholar 

  • Wilson DS (1992) Complex interactions within metacommunities, with implications for biodiversity at higher level of selection. Ecology 73(6):1984–2000

    Article  Google Scholar 

  • Winfree R, Kremen C (2009) Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc R Soc B 276:229–237

    Article  PubMed  Google Scholar 

  • Winfree R, Bartomeus I, Cariveau DP (2011) Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol Syst 42(1):1–22. https://doi.org/10.1146/annurev-ecolsys-102710-145042

    Article  Google Scholar 

  • Winfree R et al (2018) Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359:791–793

    Article  CAS  PubMed  Google Scholar 

  • Winsa M et al (2017) Sustained functional composition of pollinators in restored pastures despite despite slow functional restoration of plants. Ecol Evol 7:3836

    Article  PubMed  PubMed Central  Google Scholar 

  • With KA, Gardner RH, Turner MG (1997) Landscape connectivity and population distributions in heterogeneous landscapes. Oikos 78:151–169. https://doi.org/10.2307/3545811

    Article  Google Scholar 

  • Woodcock BA et al (2019) Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat Commun 10:1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeigler SL, Fagan WF (2014) Transient windows for connectivity in a changing world. Movement Ecol. https://doi.org/10.1186/2051-3933-2-1

    Article  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27(6):777–797. https://doi.org/10.1007/s10980-012-9737-0

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

DV: Conceptualization, methodology, investigation, writing- original draft preparation. SG: Supervision, methodology, writing- reviewing and editing.

Corresponding author

Correspondence to Denis Vasiliev.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Communicated by Andreas Schuldt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, D., Greenwood, S. The role of landscape connectivity in maintaining pollinator biodiversity needs reconsideration. Biodivers Conserv 32, 3765–3790 (2023). https://doi.org/10.1007/s10531-023-02667-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-023-02667-y

Keywords

Navigation