Skip to main content
Log in

Drivers of genetic diversity in plant populations differ between semi-natural grassland types

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The conservation of genetic diversity requires a deeper understanding of the processes shaping intraspecific variation. In recent decades, numerous studies identified various drivers of genetic diversity. However, the interpretation of these drivers remains inconsistent, since their strength and balance may differ between species and habitats. Therefore, we analyzed potential drivers of genetic diversity in a comparative multispecies approach across different semi-natural grassland types. We used molecular markers to detect genetic diversity in populations of nine typical grassland plant species from dry calcareous grasslands, mesic hay meadows, and wet litter meadows in Central Europe. Additionally, we collected data on potential drivers of genetic diversity, which were assigned to four categories describing habitat age, landscape structure, habitat quality, and population size. Subsequently, we applied multiple linear regression models and variation partitioning analyses to identify the most influential drivers of genetic diversity in semi-natural grassland plant populations. Our study revealed clear differences in drivers of genetic diversity between grassland types. In calcareous grasslands genetic diversity depended almost completely on landscape structure. However, we identified habitat age and habitat quality as additional drivers in hay meadows, while population size was another driver in litter meadows. The strong variation in drivers of genetic diversity in hay and litter meadows can be ascribed to higher levels of environmental variation among these sites and due to their more recent origin than calcareous grassland sites. We conclude that different drivers of genetic diversity must be considered to maintain high levels of intraspecific diversity in different grassland types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data accessibility

Supplementary material contains all data used for this study.

References

  • Agashe D (2009) The stabilizing effect of intraspecific genetic variation on population dynamics in Novel and Ancestral. Habitats Am Nat 174:255–267. https://doi.org/10.1086/600085

    Article  PubMed  Google Scholar 

  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    Article  PubMed  Google Scholar 

  • Banks SS et al (2013) How does ecological disturbance influence genetic diversity? Trend Ecol Evol 28:671–679

    Article  Google Scholar 

  • Betz C, Scheuerer M, Reisch C (2013) Population reinforcement – a glimmer of hope for the conservation of the highly endangered Spring Pasque flower (Pulsatilla vernalis). Biol Conserv 168:161–167

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecol 73(3):1045–1055. https://doi.org/10.2307/1940179

  • Bolnick DI et al (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Bork H-R, Bork H, Dalchow D, Faust B, Piorr H-P, Schatz T (1998) Landschaftsentwicklung in Mitteleuropa: Wirkungen des Menschen auf Landschaften. Klett-Perthes, Stuttgart

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical information-theoretic approach, 2nd ed. Springer, New York

  • Carlier L, De Vliegher A, Van Cleemput O, Boeckx P (2005) Importance and functions of European grasslands. Commun Agric Appl Biol Sci 70:5–15

    CAS  PubMed  Google Scholar 

  • de Bello F et al (2011) Quantifying the relevance of intraspecific trait variability for functional diversity. Methods Ecol Evol 2:163–174

    Article  Google Scholar 

  • Dengler J, Janišová M, Török P, Wellstein C (2014) Biodiversity of Palaearctic grasslands: a synthesis. Agric Ecosyst Environ 182:1–14

    Article  Google Scholar 

  • Durka W et al (2017) Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration. J Appl Ecol 54:116–126

    Article  Google Scholar 

  • Dutoit T, Thinon M, Talon B, Buisson E, Alard D (2009) Sampling soil wood charcoals at a high spatial resolution: a new methodology to investigate the origin of grassland plant communities. J Veg Sci 20:349–358

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fridley JD, Grime JP (2010) Community and ecosystem effects of intraspecific genetic diversity in grassland microcosms of varying species diversity. Ecology 91:2272–2283

    Article  PubMed  Google Scholar 

  • Gaujour E, Amiaud B, Mignolet C, Plantureux S (2012) Factors and processes affecting plant biodiversity in permanent grasslands. A review. Agron Sustain Dev 32:133–160

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Hamrick JL, Linhart YB, Mitton JB (1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants Annu. Rev Ecol Syst 10:173–200

    Article  Google Scholar 

  • Heywood VH, Watson RT (eds) (1995) Global biodiversity assessment. Cambridge University Press, Cambridge

  • Heikkinen RK, Luoto M, Virkkala R, Rainio K (2004) Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. J Appl Ecol 41(5):824–835. https://doi.org/10.1111/j.0021-8901.2004.00938.x

  • Huber S, Huber B, Stahl S, Schmid C, Reisch C (2017) Species diversity of remnant calcareous grasslands in south eastern Germany depends on litter cover and landscape structure. Acta Oecol 83:48–55

    Article  Google Scholar 

  • Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Honnay O, Galbusera P, Roldán-Ruiz I (2004) Genetic structure of the forest herb Primula elatior in a changing landscape. Mol Ecol 13:211–219

    Article  CAS  PubMed  Google Scholar 

  • Jensen K, Gutekunst K (2003) Effects of litter on establishment of grassland plant species: the role of seed size and successional status. Basic Appl Ecol 4:579–587

    Article  Google Scholar 

  • Johnson JB (1995) Phytosociology and gradient analysis of a subalpine treed fen in Rocky Mountain National Park, Colorado. Can J Bot 74:1203–1218

    Article  Google Scholar 

  • Kahmen S, Poschlod P (2008) Does germination success differ with respect to seed mass and germination season? experimental testing of plant functional trait responses to Grassland management. Ann Bot 101:541–548

    Article  CAS  PubMed  Google Scholar 

  • Kaulfuß F, Reisch C (2019) Restoration of grasslands using commercially produced seed mixtures: genetic variation within and among natural and restored populations of three common grassland species. Conserv Genet 20:373–384

    Article  Google Scholar 

  • Kimberley A et al (2021) Functional rather than structural connectivity explains grassland plant diversity patterns following landscape scale habitat loss. Landsc Ecol 36:265–280. doi:https://doi.org/10.1007/s10980-020-01138-x

    Article  Google Scholar 

  • Ladouceur E et al (2019) The functional trait spectrum of European temperate grasslands. J Veg Sci 30:777–788

    Article  Google Scholar 

  • Lehmair TA, Pagel E, Poschlod P, Reisch C (2020a) Genetic variation of litter meadow species reflects gene flow by hay transfer and mowing with agricultural machines. Conserv Genet 21:879–890. doi:https://doi.org/10.1007/s10592-020-01294-2

    Article  Google Scholar 

  • Lehmair TA, Pagel E, Poschlod P, Reisch C (2020b) Surrounding landscape structures, rather than habitat age, drive genetic variation of typical calcareous grassland plant species. Landsc Ecol 35:2881–2893

    Article  Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation. J Ecol 94:942–952

    Article  Google Scholar 

  • Lesica P, Adams B, Smith CT (2016) Can physiographic regions substitute for genetically-determined conservation units? A case study with the threatened plant. Silene spaldingii Conservation Genetics 17:1041–1054. doi:https://doi.org/10.1007/s10592-016-0842-5

    Article  Google Scholar 

  • Listl D, Reisch C (2012) Spatial genetic structure of the sedge Carex nigra reflects hydrological conditions in an alpine fen. Arct, Antarc. Alp Res 44:350–358

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trend Ecol Evol 18:189–197

    Article  Google Scholar 

  • Münzbergová Z, Cousins SAO, Herben T, Plačkova I, Mildén M, Ehrlén J (2013) Historical habitat connectivity affects current genetic structure in a grassland species. Plant Biol 15:195–202

    Article  PubMed  Google Scholar 

  • Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants Perspectives in plant ecology. Evolut System 3:93–114

    Google Scholar 

  • Oksanen J et al (2019) vegan: Community Ecology Package. R package version 2.4-3

  • Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm. J Ecol 94:1233–1248

    Article  Google Scholar 

  • Pagel E, Lehmair TA, Poschlod P, Reisch C (2020) Genetic variation of typical plant species in oat-grass meadows: the effect of land use history, landscape structure and habitat quality. Front Ecol Evol Press

  • Pauls SU, Nowak C, Balint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946

    Article  PubMed  Google Scholar 

  • Peñas J, Barrios S, Bobo-Pinilla J, Lorite J, Martínez-Ortega MM (2016) Designing conservation strategies to preserve the genetic diversity of Astragalus edulis Bunge, an endangered species from western. Mediterranean region PeerJ 4:e1474–e1474. doi:https://doi.org/10.7717/peerj.1474

    Article  PubMed  Google Scholar 

  • Piqueray J, Ferroni L, Delescaille L-M, Speranza M, Mahy G, Poschlod P (2015) Response of plant functional traits during the restoration of calcareous grasslands from forest stands. Ecol Ind 48:408–416

    Article  Google Scholar 

  • Poschlod P (2017) Geschichte der Kulturlandschaft, 2nd edn. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Poschlod P, Baumann A (2010) The historical dynamics of calcareous grasslands in the Central and Southern Franconian jurassic mountains – a comparative pedoanthracological and pollen analytical study. Holocene 20:13–23

    Article  Google Scholar 

  • Poschlod P, Baumann A, Karlik P (2009) Origin and development of grasslands in central Europe. In: Veen P, Jefferson R, de Smidt J, van der Straaten J (eds) Grasslands in Europe - of high nature value. KNNV Publishing, Zeist, pp 15–25

    Google Scholar 

  • Poschlod P, Biewer H (2005) Diaspore and gap availability are limiting species richness in wet meadows. Folia Geobotanica 40:13–34

    Article  Google Scholar 

  • Prentice HC, Lönn M, Rosquist G, Ihse M, Kindström M (2006) Gene diversity in a fragmented population of Briza media: grassland continuity in a landscape context. J Ecol 94:87–97

    Article  CAS  Google Scholar 

  • Raffard A, Santoul F, Cucherousset J, Blanchet S (2019) The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol Rev 94:648–661

    Article  PubMed  Google Scholar 

  • Reed DH, Frankham R (2003) Corelation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Reisch C, Bernhardt-Römermann M (2014) The impact of study design and life history traits on genetic variation of plants determined with AFLPs. Plant Ecol 215:1493–1511

    Article  Google Scholar 

  • Reisch C, Hartig F (2020) Species and genetic diversity patterns show different responses to land use intensity in central European grasslands. Diversity and Distributions in press

  • Reisch C, Rosbakh S (2020) Patterns of genetic variation in European plant species depend on altitude. Diversity and Distributions

  • Reisch C, Sattler J (2020) Impact of river dynamics on the genetic variation of Gypsophila repens (Caryophyllaceae): a comparison of heath forest and more dynamic gravel bank populations along an alpine river. Plant Biol in press

  • Reisch C et al (2017) Genetic diversity of calcareous grassland plant species depends on historical landscape configuration. BMC Ecol 17:19 doi. DOI https://doi.org/10.1186/s12898-017-0129-9

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (1978) R: A language and environment for statistical computing

  • Reitalu T, Johansson LJ, Sykes MT, Hall K, Prentice HC (2010) History matters: village distances grazing and grassland species diversity. J Appl Ecol 47(6):1216–1224. https://doi.org/10.1111/j.1365-2664.2010.01875.x

  • Robin V et al (2018) A comparative review of soil charcoal data: spatio-temporal patterns of origin and long-term dynamics of Western European nutrient poor grasslands. Holocene 28:1313–1324

    Article  Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, 2 edn. Kluwer Academic Press, Dordrecht, pp 1–8

    Google Scholar 

  • Rosengren F, Cronberg N, Reitalu T, Prentice HC (2013) Genetic variation in the moss Homalothecium lutescens in relation to habitat age and structure . Botany 91:431–441. https://doi.org/10.1139/cjb-2012-0258

    Article  CAS  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci U S A 101:15261–15264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taberlet P et al (2012) Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol Lett 15:1439–1448

    Article  PubMed  Google Scholar 

  • Vos P et al (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallis De Vries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273

    Article  Google Scholar 

  • Wickham H et al (2019) Welcome to the Tidyverse. J Open Source Softw 4:1686

    Article  Google Scholar 

  • Yeh FC, Yang RC, Boyles TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, Alberta

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trend Ecol Evol 11:413–418

    Article  CAS  Google Scholar 

  • Zelnik I, Čarni A (2013) Plant species diversity and composition of wet grasslands in relation to environmental factors. Biodivers Conserv 22:2179–2192. doi:https://doi.org/10.1007/s10531-013-0448-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Petra Schitko for assistance in the lab and Sven Rubanschi for support in statistical approaches. We further thank Cornelia Straubinger, Lina Begemann, and Eva Wagner for providing the vegetation cover data. The study was financially supported by the Federal Agency for Agriculture and Food (BLE). The authors declare that there is no conflict of interest.

Funding

This study was funded by the “Bundesanstalt für Landwirtschaft und Ernährung“, Grant Number: 2813BM001.

Author information

Authors and Affiliations

Authors

Contributions

CR and PP conceived and designed the study. EP and TAL collected the data. TAL performed the data analyses. CR, TAL, EP, and PP wrote the manuscript.

Corresponding author

Correspondence to Christoph Reisch.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Daniel Sanchez Mata.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of the article was corrected due to inclusion of incorrect subtitle.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 42 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reisch, C., Lehmair, T.A., Pagel, E. et al. Drivers of genetic diversity in plant populations differ between semi-natural grassland types. Biodivers Conserv 30, 3549–3561 (2021). https://doi.org/10.1007/s10531-021-02260-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02260-1

Keywords

Navigation