Skip to main content
Log in

Effect of aluminum on growth and herbicide resistance in Commelina communis and Tradescantia fluminensis, two invasive weed species in tea gardens

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Tea gardens are established on acidic soils (pH < 5.5) and undergo extensive fertilization to maximize yield, which inadvertently promotes the proliferation of various weed species. Commelina communis and Tradescantia fluminensis (Commelinaceae) are major threats to tea plantations causing the highest destruction compared to other weed species. This study investigated the mechanisms behind the tolerance exhibited toward elevated aluminum (Al) concentrations in acidic soils and its contribution to these species’ invasive behavior and herbicide resistance. Both species displayed only a 17–22% reduction in biomass under 400 µM Al, and the Al accumulation remained low, ranging between 100 and 200 µg g−1 DW. Interestingly, C. communis responded to low to moderate Al levels (50–150 µM Al3+) with growth stimulation. Antioxidant enzyme activity and flavonoid and anthocyanin leaf concentrations increased with Al treatment concentrations. Surprisingly, exposure of plants to Al, particularly at the 50 µM threshold, resulted in a significant reduction in leaf damage inflicted by a spectrum of herbicides (paraquat, glyphosate, clethodim, and 2,4-D), with the effect more pronounced in C. communis. Our results demonstrate that enhancement of antioxidant enzymes and accumulation of detoxifying metabolites, coupled with the accumulation of pivotal intermediates of metabolic pathways under Al treatment collectively contribute to enhanced resistance against an array of herbicides. These findings provide insights into the invasive propensity of C. communis and T. fluminensis, particularly in acidic soil conditions prevalent in tea gardens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  Google Scholar 

  • Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman JF, Lutts S, Cai G, Guerriero G (2019) Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ Exp Bot 161:98–106

    Article  CAS  Google Scholar 

  • Bidarlord M, Kahneh E, Tokasi S, Mirghasemi ST (2021) Introducing the invasive species, Tradescantia fluminensis for the flora of Iran, with emphasis on its risk assessment. Rostaniha 22:56–66 ((In Persian with English abstract))

    Google Scholar 

  • Blanco-Ayala T, Andérica-Romero AC, Pedraza-Chaverri J (2014) New insights into antioxidant strategies against paraquat toxicity. Free Radic Res 48:623–640

    Article  CAS  PubMed  Google Scholar 

  • Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M (2017) Aluminum, a friend or foe of higher plants in acid soils. Front Plant Sci 8:1767

    Article  PubMed  PubMed Central  Google Scholar 

  • Boscolo PR, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62:181–189

    Article  CAS  PubMed  Google Scholar 

  • Carr MKV, Stephens W (1992) Climate, weather and the yield of tea. In: Willson KC, Clifford MN (eds) Tea: cultivation to consumption. Springer, Dordrecht, pp 87–135

    Chapter  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  • Culpepper AS, Flanders JT, York AC, Webster TM (2004) Tropical spiderwort (Commelina benghalensis) control in glyphosate-resistant cotton. Weed Technol 18:432–436

    Article  CAS  Google Scholar 

  • Dahech I, Farah W, Trigui M, Hssouna AB, Belghith H, Belghith KS, Abdallah FB (2013) Antioxidant and antimicrobial activities of Lycium shawii fruits extract. Int J Biol Macromol 60:328–333

    Article  CAS  PubMed  Google Scholar 

  • Doncheva S, Amenós M, Poschenrieder C, Barceló J (2005) Root cell patterning: a primary target for aluminum toxicity in maize. J Exp Bot 56:1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Faden RB (1998) Commelinaceae. In: Kubitzki K (ed) Flowering plants: monocotyledons. The families and genera of vascular plants (Vol. 4). Springer, Berlin, pp 109–128

  • Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6:709–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajiboland R (2017) Environmental and nutritional requirements for tea cultivation. Folia Hortic 29:199–220

    Article  Google Scholar 

  • Hajiboland R (2018) Nutrient deficiency and abundance in tea plants: metabolism to productivity. In: Han WY, Li X, Ahammed G (eds) Stress physiology of tea in the face of climate change. Springer, Singapore, pp 173–215

    Chapter  Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Barceló J, Poschenrieder C (2013a) Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). J Plant Nutr Soil Sci 176:616–625

    Article  CAS  Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Bastani S (2013b) Phenolics metabolism in boron-deficient tea [Camellia sinensis (L.) O. Kuntze] plants. Acta Biol Hung 64:196–206

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R, Barceló J, Poschenrieder C, Tolrá R (2013c) Amelioration of iron toxicity: a mechanism for aluminum-induced growth stimulation in tea plants. J Inorg Biochem 128:183–187

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R, Bastani S, Bahrami-Rad S, Poschenrieder C (2015) Interactions between aluminum and boron in tea (Camellia sinensis) plants. Acta Physiol Plant 37:1–3

    Article  CAS  Google Scholar 

  • Hajiboland R, Moradi A, Kahneh E, Poschenrieder C, Nazari F, Pavlovic J, Tolrà R, Salehi-Lisar SY, Nikolic M (2023a) Weed species from tea gardens as a source of novel aluminum hyperaccumulators. Plants 12:2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajiboland R, Panda CK, Lastochkina O, Gavassi MA, Habermann G, Pereira JF (2023b) Aluminum toxicity in plants: present and future. J Plant Growth Regul 42:3967–3999

    Article  CAS  Google Scholar 

  • He H, Zhan J, He L, Gu M (2012) Nitric oxide signaling in aluminum stress in plants. Protoplasma 249:483–492

    Article  CAS  PubMed  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hoekenga OA, Magalhaes JV (2010) Mechanisms of aluminum tolerance. In: Varshney RK, Costa de Oliveira A (eds) Root genomics. Springer, Berlin, pp 133–153

    Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds. Distribution and biology. University of Hawaii Press, Honolulu

    Google Scholar 

  • Hurrell GA, James TK, Lusk CS, Trolove M (2008) Herbicide selection for wandering Jew (Tradescantia fluminensis) control. N Z Plant Prot 61:368–373

    CAS  Google Scholar 

  • Iran Tea Organization (ITO) (2023) https://www.irantea.org/fa/Cshow6568.aspx (In Persian). Accessed 26 Nov 2023

  • Isaac WA, Brathwaite RA, Cohen JE, Bekele I (2007) Effects of alternative weed management strategies on Commelina diffusa Burm. infestations in Fairtrade banana (Musa spp.) in St. Vincent and the Grenadines. Crop Prot 26:1219–1225

    Article  CAS  Google Scholar 

  • Jansen S, Broadley MR, Robbrecht E, Smets E (2002) Aluminum hyperaccumulation in angiosperms: a review of its phylogenetic significance. Bot Rev 68:235–269

    Article  Google Scholar 

  • Kahneh E, Mirghasemi ST, Bidarlord M, Velaii A, Seraji A, Padasht MN (2020) Introducing the invasive species Commelina communis in tea gardens. Sci Rep AREEO, Iran. https://agrilib.areeo.ac.ir/book_8029.pdf (In Persian). Accessed 26 Nov 2023

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    Article  CAS  PubMed  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder CH, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    CAS  PubMed  Google Scholar 

  • Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Ann Rev Plant Biol 66:571–598

    Article  CAS  Google Scholar 

  • Kováčik J, Štork F, Klejdus B, Grúz J, Hedbavny J (2012) Effect of metabolic regulators on aluminium uptake and toxicity in Matricaria chamomilla plants. Plant Physiol Biochem 54:140–148

    Article  PubMed  Google Scholar 

  • Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19:335

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105

    Article  CAS  PubMed  Google Scholar 

  • McDonald M, Mila I, Scalbert A (1996) Precipitation of metal ions by plant polyphenols: optimal conditions and origin of precipitation. J Agric Food Chem 44:599–606

    Article  CAS  Google Scholar 

  • Michalak A (2010) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    Google Scholar 

  • Moncada MC, Moura S, Melo MJ, Roque A, Lodeiro C, Pina F (2003) Complexation of aluminum (III) by anthocyanins and synthetic flavylium salts: a source for blue and purple color. Inorg Chim Acta 356:51–61

    Article  CAS  Google Scholar 

  • Morrison I (1972) A semi-micro method for the determination of lignin and its use in predicting the digestibility of forage crops. J Sci Food Agric 23:455–463

    Article  CAS  PubMed  Google Scholar 

  • Nazari F, Hajiboland R, Salehi-Lisar SY, Kahneh E, Moradi A, Poschenrieder C (2023a) Aluminum accumulation in Amaranthus species and mechanisms of Al tolerance. Biologia 78:2029–2047

    Article  CAS  Google Scholar 

  • Nazari F, Hajiboland R, Salehi-Lisar SY, Kahneh E, Moradi A, Poschenrieder C (2023b) Aluminum accumulation and tolerance in four Amaranthus species. Acta Bot Croat 82:117–127

    Article  CAS  Google Scholar 

  • Nezhadasad B, Radjabian T, Hajiboland R (2023) Diverse responses of halophyte and glycophyte Lepidium species to the salt-mediated amelioration of nickel toxicity and accumulation. J Plant Res 136:117–137

    Article  CAS  PubMed  Google Scholar 

  • Osipe JB, Oliveira RS, Constantin J, Takano HK, Biffe DF (2017) Spectrum of weed control with 2,4-D and dicamba herbicides associated to glyphosate or not. Planta Daninha 35:e017160815

    Article  Google Scholar 

  • Peng A, Yu K, Yu S, Li Y, Zuo H, Li P, Li J, Huang J, Liu Z, Zhao J (2023) Aluminum and fluoride stresses altered organic acid and secondary metabolism in tea (Camellia sinensis) plants: influences on plant tolerance, tea quality and safety. Int J Mol Sci 24:4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petry RD, Ortega GG, Silva WB (2001) Flavonoid content assay: influence of the reagent concentration and reaction time on the spectrophotometric behavior of the aluminium chloride-flavonoid complex. Pharmazie 56:465–470

    CAS  PubMed  Google Scholar 

  • Pirzadah TB, Malik B, Tahir I, Rehman RU, Hakeem KR, Alharby HF (2019) Aluminum stress modulates the osmolytes and enzyme defense system in Fagopyrum species. Plant Physiol Biochem 144:178–186

    Article  CAS  PubMed  Google Scholar 

  • Poschenrieder C, Gunsé B, Corrales I, Barceló J (2008) A glance into aluminum toxicity and resistance in plants. Sci Total Environ 400:356–368

    Article  CAS  PubMed  Google Scholar 

  • Poschenrieder C, Amenós M, Corrales I, Doncheva S, Barceló J (2009) Root behavior in response to aluminum toxicity. In: Baluška F, Vivanco J (eds) Plant-environment interactions: from sensory plant biology to active plant behavior. Springer, Berlin, pp 21–43

    Chapter  Google Scholar 

  • Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25

    Article  CAS  PubMed  Google Scholar 

  • Prematilake KG, Froud-Williams RJ, Ekanayake PB (2004) Weed infestation and tea growth under various weed management methods in a young tea (Camellia sinensis [L.] Kuntze) plantation. Weed Manag 4:239–248

    Google Scholar 

  • Quina FH, Moreira PF Jr, Vautier-Giongo C, Rettori D, Rodrigues RF, Freitas AA, Silva PF, Maçanita AL (2009) Photochemistry of anthocyanins and their biological role in plant tissues. Pure Appl Chem 81:1687–1694

    Article  CAS  Google Scholar 

  • Radwan DE, Soltan DM (2012) The negative effects of clethodim in photosynthesis and gas-exchange status of maize plants are ameliorated by salicylic acid pretreatment. Photosynthetica 50:171–179

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E (2010) The convergent evolution of aluminium resistance in plants exploits a convenient currency. Funct Plant Biol 37:275–284

    Article  CAS  Google Scholar 

  • Sajedi S (2019) First report of the Commelina communis from Iran. Rostaniha 20:192–194 ((In Persian with English abstract))

    Google Scholar 

  • Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177:67–80

    Article  CAS  PubMed  Google Scholar 

  • Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC (2016) Leaf epinasty and auxin: a biochemical and molecular overview. Plant Sci 253:187–193

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24:2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siehl DL (1997) Inhibitors of EPSP synthase, glutamine synthetase and histidine synthesis. In: Roe RM, Burton JD, Kuhr RJ (eds) Herbicide activity: toxicology, biochemistry, and molecular biology. IOS Press, Netherlands, pp 37–67

    Google Scholar 

  • Simpson MG (2010) Diversity and classification of flowering plants: amborellales, nymphaeales, austrobaileyales, magnoliids, ceratophyllales, and monocots. In: Simpson MG (ed) Plant systematics, 2nd edn. Academic Press, Cambridge, pp 181–274

    Chapter  Google Scholar 

  • Singh S, Tripathi DK, Singh S, Sharma S, Dubey NK, Chauhan DK, Vaculík M (2017) Toxicity of aluminium on various levels of plant cells and organism: a review. Environ Exp Bot 137:177–193

    Article  CAS  Google Scholar 

  • Standish RJ (2002) Experimenting with methods to control Tradescantia fluminensis, an invasive weed of native forest remnants in New Zealand. N Z J Ecol 1:161–170

    Google Scholar 

  • Stebbing AR (1982) Hormesis – the stimulation of growth by low levels of inhibitors. Sci Total Environ 22:213–234

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zhang X, Broderick M, Fein H (2003) Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors 3:276–284

    Article  CAS  Google Scholar 

  • Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica. I.-the quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–68

    Article  CAS  Google Scholar 

  • Tabuchi A, Matsumoto H (2001) Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol Plant 112:353–435

    Article  CAS  PubMed  Google Scholar 

  • Tahara K, Hashida K, Otsuka Y, Ohara S, Kojima K, Shinohara K (2014) Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis. Plant Physiol 164:683–693

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Yamashita T, Takahashi A, Timberlake C (1990) Stable blue complexes of anthocyanin-aluminium-3-p-coumaroyl- or 3-caffeoyl-quinic acid involved in the blueing of Hydrangea flower. Phytochemistry 29:1089–1191

    Article  CAS  Google Scholar 

  • Tang S, Wilke BM, Huang C (1999) The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People’s Republic of China. Plant Soil 209:225–232

    Article  CAS  Google Scholar 

  • Tolrà R, Poschenrieder C, Luppi B, Barceló J (2005) Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa L. Environ Exp Bot 54:231–238

    Article  Google Scholar 

  • Tolrà R, Barceló J, Poschenrieder C (2009) Constitutive and aluminium-induced patterns of phenolic compounds in two maize varieties differing in aluminium tolerance. J Inorg Biochem 103:1486–1490

    Article  PubMed  Google Scholar 

  • Tolrà R, Martos S, Hajiboland R, Poschenrieder C (2020) Aluminium alters mineral composition and polyphenol metabolism in leaves of tea plants (Camellia sinensis). J Inorg Biochem 204:110956

    Article  PubMed  Google Scholar 

  • Tonutare T, Moor U, Szajdak L (2014) Strawberry anthocyanin determination by pH differential spectroscopic method – how to get true results? Acta Sci Pol Hortorum Cultus 13:35–47

    Google Scholar 

  • Ulloa SM, Owen MD (2009) Response of Asiatic dayflower (Commelina communis) to glyphosate and alternatives in soybean. Weed Sci 57:74–80

    Article  CAS  Google Scholar 

  • Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–5

    Article  Google Scholar 

  • Wallace G, Fry SC (1994) Phenolic components of the plant cell wall. Int Rev Cytol 151:229–267

    Article  CAS  PubMed  Google Scholar 

  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    Article  CAS  PubMed  Google Scholar 

  • Wenzl P, Patino GM, Chaves AL, Mayer JE, Rao IM (2001) The high level of aluminum resistance in signal grass is not associated with known mechanisms of external aluminum detoxification in root apices. Plant Physiol 125:1473–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson AK (1981) Commelinaceae-A review of the distribution, biology and control of the important weeds belonging to this family. Int J Pest Manag 27:405–418

    Google Scholar 

  • Yu Q, Collavo A, Zheng MQ, Owen M, Sattin M, Powles SB (2007) Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol 145:547–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li YH, Hu LY, Wang SH, Zhang FQ, Hu KD (2008) Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress. Russ J Plant Physiol 55:469–474

    Article  CAS  Google Scholar 

  • Zhang Z, Wang H, Wang X, Bi Y (2011) Nitric oxide enhances aluminum tolerance by affecting cell wall polysaccharides in rice roots. Plant Cell Rep 30:1701–1711

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu R, Gung BW, Tindall S, Gonzalez JM, Halvorson JJ, Hagerman AE (2016) Polyphenol–aluminum complex formation: Implications for aluminum tolerance in plants. J Agric Food Chem 64:3025–3033

    Article  CAS  PubMed  Google Scholar 

  • Zhou XX, Yang LT, Qi YP, Guo P, Chen LS (2015) Mechanisms on boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings at a transcriptional level revealed by cDNA-AFLP analysis. PLoS One 10:e0115485

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Li S, Zeng K (2016) Exogenous nitric oxide-induced postharvest disease resistance in citrus fruit to Colletotrichum gloeosporioides. J Sci Food Agric 96:505–512

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the University of Tabriz. Roghieh Hajiboland was supported by a grant from the University of Tabriz (Grant No. 3/408447; 2023/04/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roghieh Hajiboland.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiboland, R., Nazari, F., Mohammadzadeh, P. et al. Effect of aluminum on growth and herbicide resistance in Commelina communis and Tradescantia fluminensis, two invasive weed species in tea gardens. Biol Invasions (2024). https://doi.org/10.1007/s10530-024-03318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10530-024-03318-1

Keywords

Navigation