Skip to main content

Advertisement

Log in

History, control, epidemiology, ecology, and economy of the invasion of European rabbits in Chile: a comparison with Australia

  • Review
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

We reviewed existing studies on the European rabbit in Chile regarding history, control, epidemiology, ecology, and economic impacts, comparing them with Australia's accumulated knowledge about the same topics. We focused especially on the resulting gaps and challenges to orient efforts toward controlling and managing rabbits in Chile. The European rabbit was first introduced to central Chile in the mid-eighteenth century and was reported as naturalized by 1884. It is among the seven invasive species that most affect Chilean ecosystems and their productive uses. The strongest rabbit impacts have been reported on Chilean islands and in the mainland’s sclerophyllous forest biome. Released rabbits colonized both Juan Fernández Archipelago in 1935, becoming a harmful species damaging endemic vegetation and nesting bird populations, and Tierra del Fuego Island in 1936, becoming competitors for forage with sheep. The sclerophyllous forest in continental Chile is one of the five Mediterranean ecosystems of the world and one of the 34 critical “hotspots” for conserving the planet’s biodiversity. Here, released rabbits and escapees have changed the spatial distribution of native shrubs and herbs, impeding the regeneration of the native matorral. Overall, the impacts of this species during the last 70 years in Chile have been addressed chiefly from a community-ecological perspective, and applied research is lacking for improving public policies and efficient management of this invader. It is urgent to determine the geographical distribution, population size, and drivers of rabbit dynamics to predict their spread and outbreaks. Also, it is necessary to better understand their effects on Chilean natural ecosystems and agroecosystems to assess their economic impacts on biodiversity and production. In addition, it is essential to research pathogens such as Myxoma virus or Lagovirus in Chile, toward determining their prevalence, virulence, and corresponding rabbit immunity, to estimate and potentially harness any contributions such pathogens could make towards controlling populations through biological agents.

Resumen

Revisamos los estudios existentes sobre el conejo europeo en Chile en cuanto a historia, control, epidemiología, ecología e impactos económicos, comparándolos con el conocimiento acumulado en Australia sobre los mismos temas. Nos enfocamos especialmente en los vacíos y desafíos resultantes para orientar los esfuerzos hacia el control y manejo de los conejos en Chile. El conejo europeo se introdujo por primera vez en Chile central a mediados del siglo XVIII y se reportó como naturalizado en 1884. Se encuentra entre las siete especies invasoras que más afectan los ecosistemas chilenos y sus usos productivos. Los impactos más fuertes de los conejos se han reportado en islas chilenas y en el bioma del bosque esclerófilo del continente. Los conejos liberados colonizaron tanto el Archipiélago de Juan Fernández en 1935, convirtiéndose en una especie que daña la vegetación endémica y las poblaciones de aves nidificadoras, como en la Isla Tierra del Fuego en 1936, convirtiéndose en competidores de las ovejas por forraje. El bosque esclerófilo de Chile continental es uno de los cinco ecosistemas mediterráneos del mundo y uno de los 34 “hotspots” críticos para la conservación de la biodiversidad del planeta. Aquí, los conejos liberados y escapados han cambiado la distribución espacial de los arbustos y hierbas nativos, impidiendo la regeneración del bosque esclerófilo. En general, los impactos de esta especie durante los últimos 70 años en Chile han sido abordados principalmente desde una perspectiva comunitaria-ecológica, y falta investigación aplicada para mejorar las políticas públicas y el manejo eficiente de este invasor. Es urgente determinar la distribución geográfica, el tamaño de la población y los impulsores de la dinámica del conejo para predecir su propagación y brotes. Además, es necesario comprender mejor los efectos del conejo sobre los ecosistemas naturales y agroecosistemas chilenos para evaluar sus impactos económicos sobre la biodiversidad y la producción agrícola. Además, es fundamental investigar patógenos como el Myxoma o Lagovirus en Chile, para determinar su prevalencia, virulencia y la correspondiente inmunidad en conejos, para aprovechar cualquier contribución que dichos patógenos puedan hacer para controlar poblaciones a través de agentes biológicos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abarca K, Gárate D, López J, Acosta-Jamett G (2016) Flea and tick species from dogs in urban and rural areas in four districts in Chile. Archivos De Medicina Veterinaria (Valdivia) 48(2):247–253

    Article  Google Scholar 

  • Abrantes J, Van der Loo W, Le Pendu J, Esteves PJ (2012) Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review. Vet Res 43(1):1–9. https://doi.org/10.1186/1297-9716-43-12

    Article  Google Scholar 

  • Acevedo P (1990a) Efecto de Oryctolagus cuniculus sobre la regeneración de Chenopodium crusoeanum. Thesis, Universidad de Concepción, Chillán, Chile, Myrceugenia fernadeziana y Sophora fernadeziana en Juan Fernández. M. Sc

    Google Scholar 

  • Acevedo P (1990b) Ectoparásitos del conejo silvestre (Oryctolagus cuniculus) del Archipiélago de Juan Fernández. Bol Chil Parasitol 45:29–31

    CAS  Google Scholar 

  • ACIL (1996) The Economic Importance of Wild Rabbits to Rural Production in Australia. Report to the International Wool Secretariat, ACIL Economics and Policy Ltd. Canberra, Australia

  • Acuña E, Drake F (2003) Análisis del riesgo en la gestión forestal e inversiones silviculturales: una revisión bibliográfica. Bosque (Valdivia) 24(1):113–124. https://doi.org/10.4067/S0717-92002003000100009

    Article  Google Scholar 

  • Albarracín O, Carvajal C, Castellanos H, Díaz C, Fernández M, Mora A (2018) Guía de Aplicación de la Valoración Económica Ambiental. Ministerio del Medio Ambiente. Bogotá, Colombia, pp 1–58

  • Alves JM, Carneiro M, Cheng JY, de Matos AL, Rahman MM, Loog L et al (2019) Parallel adaptation of rabbit populations to Myxoma virus. Science 363(6433):1319–1326. https://doi.org/10.1126/science.aau7285

    Article  CAS  Google Scholar 

  • Amaya JN, Bonino NA, Pelliza de Sbriller A (1980) Densidad y dieta del conejo silvestre europeo [Oryctolagus cuniculus] en Tierra del Fuego, a fines del verano. Reunión Argentina de Ecología. 9. San Carlos de Bariloche. Argentina.

  • Amaya J, Bonino N (1981) El conejo silvestre europeo (Oryctolagus cuniculus) en Tierra del Fuego. IDIA (Buenos Aires) 387–388:14–28

    Google Scholar 

  • Angulo E (2003) Factores que afectan a la distribución y abundancia del conejo en Andalucía. Dissertation, Universidad Complutense de Madrid, Spain, pp 1–148

  • Aparicio JP, Solari HG, Bonino NA (2006) Perspectivas teóricas sobre la dinámica de la mixomatosis con aplicaciones en control biológico. Ecol Austral 16(1):15–28

    Google Scholar 

  • Araos A, Cerda C, Skewes O, Cruz G, Tapia P, Baeriswyl F (2020) Estimated economic impacts of seven invasive alien species in Chile. Hum Dimens Wildl 25(4):398–403. https://doi.org/10.1080/10871209.2020.1740837

    Article  Google Scholar 

  • Arentsen P (1953) Plaga de conejos en Tierra del Fuego. Boletín Ganadero (Punta Arenas) 3:3–4

    Google Scholar 

  • Arentsen P (1954) Control biológico del conejo: difusión del virus mixomatosis cuniculus, por contagio directo, en la Isla Grande de Tierra del Fuego. Boletín Ganadero (Punta Arenas) 43:1–26

    Google Scholar 

  • Arthur CP, Louzis C (1988) A review of Myxomatosis among rabbits in France. Revue Scientifique Et Technique (International Office of Epizootics) 7(4):937–976. https://doi.org/10.20506/rst.7.4.385

    Article  CAS  Google Scholar 

  • ATM, CODELCO (2018) Monitoreo de vertebrados terrestres fundo Rinconada de Huechún Región Metropolitana, Chile, campaña de otoño, https://snifa.sma.gob.cl/. Accessed 21 March 2020

  • Baker CM, Bode M (2016) Placing invasive species management in a spatiotemporal context. Ecol Appl 26(3):712–725. https://doi.org/10.1890/15-0095

    Article  Google Scholar 

  • Baker-Gabb DJ (1984) The breeding ecology of twelve species of diurnal raptor in north-western Victoria. Australian Wildlife Res 11(1):145–160

    Article  Google Scholar 

  • Bell DJ, Webb NJ (1991) Effects of climate on reproduction in the European rabbit (Oryctolagus cuniculus). J Zool London 224(4):639–648. https://doi.org/10.1111/j.1469-7998.1991.tb03792.x

    Article  Google Scholar 

  • Benedetti S (2012) Monografía de peumo Cryptocarya alba (Mol.) Looser. Programa de Investigación de Productos Forestales no Madereros. Instituto Forestal. Santiago, Chile. pp 1–80

  • Berryman AA (1999a) Principles of population dynamics and their applications. Washington State University. Taylor & Francis

    Google Scholar 

  • Berryman AA (1999b) The theoretical foundations of biological control. In: Hawkins B, Cornell H (eds) Theoretical approaches to biological control. Cambridge University Press, pp 3–21

    Chapter  Google Scholar 

  • Berryman ΑA, Stenseth NC, Wollkind DJ (1984) Metastability of forest ecosystems infested by bark beetles. Popul Ecol 26(1):13–29. https://doi.org/10.1007/BF02515505

    Article  Google Scholar 

  • Bertagnoli S, Marchandeau S (2015) Myxomatosis. Revue Scientifique et Technique (International Office of Epizootics) 34(2): 549–556. 56. doi: https://doi.org/10.20506/rst.34.2.2378

  • Best SM, Collins SV, Kerr PJ (2000) Coevolution of host and virus: cellular localization of virus in Myxoma virus infection of resistant and susceptible European rabbits. Virology 277(1):76–91. https://doi.org/10.1006/viro.2000.0505

    Article  CAS  Google Scholar 

  • Bird P, Mutze G, Peacock D, Jennings S (2012) Damage caused by low-density exotic herbivore populations: The impact of introduced European rabbits on marsupial herbivores and Allocasuarina and Bursaria seedling survival in Australian coastal shrubland. Biol Invasions 14(3):743–755. https://doi.org/10.1007/s10530-011-0114-8

    Article  Google Scholar 

  • Bobadilla Y (2021) Uso de hábitat y ecología trófica de un exótico invasor, el conejo europeo (Oryctolagus cuniculus), en el ecosistema semiárido de Patagonia-Monte, Argentina, Tesis doctoral, Universidad Nacional de Cuyo, Consejo de Administración Académica, Programa de Postgrado en Biología PROBIOL, Mendoza, Argentina, pp 1–167.

  • Bomford M, Hart Q (2002) Non-indigenous vertebrates in Australia. In: Pimentel D (ed) : Economic and environmental costs of alien plant animal and microbe species biological invasions. CRC Press, pp 26–41

    Google Scholar 

  • Bonino NA (1994) Caracterización del daño ocasionado por liebres y conejos en plantaciones forestales. INTA EEA, Informe Plan de Trabajo 1182, Bariloche, Argentina, pp 1–7

  • Bonino NA (1995) Introduced mammals into Patagonia, Southern Argentina: consequences, problems and management strategies. In: Bissonette JA, Krausman PR (eds) Integrating people and wildlife for a sustainable future. Proceedings of the first International Wildlife Management Congress. The Wildlife Society, Bethesda, Maryland, USA, pp 406–409

  • Bonino NA (2006) Interacción trófica entre el conejo silvestre europeo y el ganado doméstico en el noroeste de la Patagonia Argentina. Ecol Austral 16(2):135–142

    Google Scholar 

  • Bonino NA, Gader R (1987) Expansión del conejo silvestre europeo (Oryctolagus cuniculus L.) en la República Argentina y perspectivas futuras. Anales Del Museo De Historia Natural De Valparaíso (Chile) 18:157–162

    Google Scholar 

  • Bonino NA, Soriguer R (2004) Distribución actual y dispersión del conejo europeo (Oryctolagus cuniculus) en la provincia de Mendoza. Argentina Mastozoología Neotropical 11(2):237–241

    Google Scholar 

  • Bonino N, Soriguer R (2009) The invasion of Argentina by the European wild rabbit Oryctolagus cuniculus. Mammal Rev 39(3):159–166. https://doi.org/10.1111/j.1365-2907.2009.00146.x

    Article  Google Scholar 

  • Boudouresque C, Ruitton S, Verlaque M (2005) Large-scale disturbances, regime shift and recovery in littoral systems subject to biological invasions. In: Velikova V, Chipev N (eds) Large-scale disturbances (regime shifts) and recovery in aquatic ecosystems: challenges for management towards sustainability. UNESCO Publisher, pp 85–101

    Google Scholar 

  • Bowen Z, Read J (1998) Population and demographic patterns of rabbits (Oryctolagus cuniculus) at Roxby Downs in arid South Australia and the influence of Rabbit Haemorrhagic Disease. Australian Wildlife Research 25(6):655–662. https://doi.org/10.1071/WR98004

    Article  Google Scholar 

  • Bradshaw C, Hoskins A, Haubrock P, Cuthbert R, Diagne C, Leroy B, Andrews L, Page B, Cassey P, Sheppard A, Courchamp F (2021) Detailed assessment of the reported economic costs of invasive species in Australia. NeoBiota 67:511–550. https://doi.org/10.3897/neobiota.67.58834

    Article  Google Scholar 

  • Brescia M (1979) Mares de leyenda. Talleres Gráficos García, Santiago, Chile

  • Briceño C (2019) Análisis predictivo de eficacia epidemiológica y territorial del control biológico de conejos silvestres europeos (Oryctolagus cuniculus), propagando el virus mixoma en la isla de Robinson Crusoe de Chile. Honors Thesis Diplomado en Conservación y Manejo de Fauna Silvestre, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile, pp 1–27

  • Bridges EL (1949) Uttermost part of the Earth. E. P. Dutton, New York.

  • Brown SC, Wells K, Roy-Dufresne E, Campbell S, Cooke B, Cox T, Fordham DA (2020) Models of spatiotemporal variation in rabbit abundance reveal management hot spots for an invasive species. Ecol Appl 30(4):e02083. https://doi.org/10.1002/eap.2083

    Article  Google Scholar 

  • Brun A, Saurat P, Gilbert Y, Godard A, Bouquet JF (1981) Données actuelles sur l’épidémiologie, la pathogénie, et la symptomatologie de la Myxomatose. Revue De Medecine Veterinaire 132:585–590

    Google Scholar 

  • Buenavista S, Palomares F (2018) The role of exotic mammals in the diet of native carnivores from South America. Mammal Rev 48(1):37–47

    Article  Google Scholar 

  • Burrell A, Evans J, Liu Y (2017) Detecting dryland degradation using Time Series Segmentation and Residual Trend analysis (TSS-RESTREND). Remote Sens Environ 197:43–57. https://doi.org/10.1016/j.rse.2017.05.018

    Article  Google Scholar 

  • Calvete C (1999) Epidemiología de enfermedad hemorrágica (VHD) y mixomatosis en el conejo silvestre (Oryctolagus cuniculus L. 1758) en el valle medio del Ebro: modelización de VHD y herramientas de gestión. Dissertation, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain, pp 1–257

  • Calvete C, Mendoza M, Alcaraz A, Sarto MP, Jiménez-de-Bagüéss MP, Calvo AJ, Monroy F, Calvo JH (2018) Rabbit Haemorrhagic Disease: Cross-protection and comparative pathogenicity of GI. 2/RHDV2/b and GI. 1b/RHDV lagoviruses in a challenge trial. Vet Microbiol 219:87–95. https://doi.org/10.1016/j.vetmic.2018.04.018

    Article  CAS  Google Scholar 

  • Camus P, Castro SA, Jaksic FM (2008) El conejo europeo en Chile: Historia de una invasión biológica. Historia (Santiago) 41(2):305–339. https://doi.org/10.4067/S0717-71942008000200001

    Article  Google Scholar 

  • Camus P, Castro SA, Jaksic FM (2014) Reconstrucción histórica de la invasión de conejo europeo (Oryctolagus cuniculus) en Chile central: Lecciones para un mejor diálogo entre científicos y gestores. In: Jaksic FM, Castro SA (eds) Invasiones biológicas en Chile: Causas globales e impactos locales. Ediciones Universidad Católica de Chile, Santiago, pp 239–265

    Google Scholar 

  • Camus P, Castro SA, Jaksic FM (2021) European Rabbit (Oryctolagus cuniculus L.) in Chile: The human dimension behind a biological invasion. In: Jaksic FM, Castro SA (eds) Biological invasions in the South American Anthropocene: Global causes and local impacts. Springer Nature, Switzerland A.G, pp 171–185. doi: https://doi.org/10.1007/978-3-030-56379-0_8

  • Capucci L, Scicluna MT, Lavazza A (1991) Diagnosis of viral haemorrhagic Disease of rabbits and the European brown hare syndrome. Revue Scientifique Et Technique (International Office of Epizootics) 10(2):347–370. https://doi.org/10.20506/rst.10.2.561

    Article  CAS  Google Scholar 

  • Castro SA, Bozinovic F, Jaksic FM (2008) Ecological efficiency and legitimacy of seed dispersal of an endemic shrub (Lithrea caustica) by the European rabbit (Oryctolagus cuniculus) in central Chile. J Arid Environ 72(7):1164–1173. https://doi.org/10.1016/j.jaridenv.2007.12.012

    Article  Google Scholar 

  • Cattan PE, Valderas JI (1987) El conejo silvestre: ¿plaga en Chile? Monografías De Medicina Veterinaria (Santiago) 9(1):1–5

    Google Scholar 

  • Cerda C, Silva-Rodríguez E, Briceño C (2020) Naturaleza en sociedad: Una mirada a la dimensión humana de la conservación de la biodiversidad. Ocholibros Editores, Santiago, Chile, pp 475

  • Chapple PJ, Lewis ND (1965) Myxomatosis and the rabbit flea. Nature 207:388–389. https://doi.org/10.1038/207388a0

    Article  CAS  Google Scholar 

  • Chen B, Han M, Peng K, Zhou S, Shao L, Wu XF et al (2018) Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains. Sci Total Environ 613–614(1):931–943. https://doi.org/10.1016/j.scitotenv.2017.09.138

    Article  CAS  Google Scholar 

  • Chen KY (1986) Rabbit plague. Infectious Diseases in Domestic Animals 3:53–55

    Google Scholar 

  • CONAF, Corporación Nacional Forestal, (1973) El conejo silvestre en Chile, Boletín Técnico 8. Santiago, Chile, pp 1–35

    Google Scholar 

  • CONAF (1974) Proyecto del Manejo Integral del Conejo. Departamento de Conservación y Medio Ambiente, Sección Vida Silvestre. Santiago, Chile, pp 1–9

  • CONAF (1976) Plan de Manejo Parque Nacional Juan Fernández. Documento Técnico de Trabajo 22, FAO, Oficina Regional para América Latina. Santiago, Chile, pp 1–61

  • CONAF (2003) Plan de Manejo Reserva Nacional Pingüino de Humboldt, Tomo B2 Atlas de Línea Base Isla Choros. Departamento de Áreas Protegidas y Medio Ambiente. Santiago, Chile, pp 1–110

    Google Scholar 

  • CONAF (2009) Plan de Manejo Parque Nacional Archipiélago Juan Fernández. Ministerio de Agricultura, Valparaíso, Chile, pp 1–267

  • CONAF (2013) Proyecto erradicación conejo Isla Choros. Coquimbo, Chile, pp 1–82

    Google Scholar 

  • CONAF (2014) Plan de manejo Parque Nacional Archipiélago Juan Fernández. Documento Operativo. Valparaíso, Chile, pp 1–100

    Google Scholar 

  • CONAF (2016) Programa de acción nacional de lucha contra la desertificación, la degradación de las tierras y la sequía PANCD-Chile 2016–2030. Estrategia Nacional de Cambio Climático y Recursos Vegetacionales. Santiago, Chile, pp 1–236

    Google Scholar 

  • CONAF (2018) Perfiles de proyectos para postulación a financiamientos de la glosa insular. Parque Nacional Archipiélago Juan Fernández. Ministerio de Agricultura. Valparaíso, Chile, pp 1–100

    Google Scholar 

  • Constible JM, Sweitzer RA, Van Vuren DH, Schuyler PT, Knapp DA (2005) Dispersal of non-native plants by introduced bison in an island ecosystem. Biol Invasions 7(4):699–709. https://doi.org/10.1007/s10530-004-5859-x

    Article  Google Scholar 

  • Cooke BD (1977) Factors limiting the distribution of the wild rabbit in Australia. Proc Ecol Soc Aust 10(11):113–120

    Google Scholar 

  • Cooke BD (1982) Reduction of food intake and other physiological responses to a restriction of drinking water in captive wild rabbits, Oryctolagus cuniculus (L.). Australian Wildlife Research 9(2):247–252. doi: https://doi.org/10.1071/WR9820247

  • Cooke BD (1983) Changes in the age-structure and size of populations of wild rabbits in South Australia following the introduction of European rabbit fleas, Spilopsyllus cuniculi (Dale) as vectors of Myxomatosis. Australian Wildlife Res 10(1):105–120. https://doi.org/10.1071/WR9830105

    Article  Google Scholar 

  • Cooke BD (1998) Did introduced European rabbits Oryctolagus cuniculus (L) displace common wombats Vombatus ursinus (Shaw) from part of their range in South Australia. In: Wells RT, Pridmore PA (eds) Wombats. Surrey-Beatty and Sons, Chipping Norton, New South Wales, Australia, pp 262–270

  • Cooke BD (2002) Rabbit Haemorrhagic Disease: Field epidemiology and the management of wild rabbit populations. Revue Scientifique Et Technique (Int Office of Epizootics) 21(1):347–358. https://doi.org/10.20506/rst.21.2.1337

    Article  CAS  Google Scholar 

  • Cooke BD (2007) A review of Rabbit Haemorrhagic Disease in Australia. Australian Wool Innovation and Meat and Livestock Australia, CSIRO, Canberra, Australia, pp 1–82

  • Cooke BD (2011) The Ecological Impact of Wild European Rabbits Oryctolagus cuniculus (L.) in Mediterranean-like and Arid Climatic Regions of Australia. Report to the Invasive Animals Cooperative Research Centre, Canberra, Australia, pp 1–100

  • Cooke BD (2012) Rabbits: Manageable environmental damaging species or participants in new Australian ecosystems? Australian Wildlife Res 39(4):279–289. https://doi.org/10.1071/WR11166

    Article  Google Scholar 

  • Cooke BD (2016) El uso de MYXV y RHDVV en islas para facilitar la erradicación de conejos. University of Canberra, Institute for Applied Ecology, Canberra, Australia, Informe técnico preparado por B. Cooke para CONAF, pp 1–5

    Google Scholar 

  • Cooke BD, McPhee SR (2007) Rabbits and Native Plant Biodiversity. A report complied for Australian Wool Innovation and Meat and Livestock Australia, Invasive Animals Co-operative Research Centre, University of Canberra. Canberra, Australia, pp 1–42

  • Cooke BD, Jones R, Gong W (2010) An economic decision model of wild rabbit Oryctolagus cuniculus control to conserve native vegetation. Australian Wildlife Res 37(7):558–565. https://doi.org/10.1071/WR09154

    Article  Google Scholar 

  • Cooke BD, Chudleigh P, Simpson S, Saunders G (2013) The economic benefits of the biological control of rabbits in Australia, 1950–2011. Aust Econ Hist Rev 53(1):91–107. https://doi.org/10.1111/aehr.12000

    Article  Google Scholar 

  • Cooke BD, Duncan RP, McDonald I, Liu J, Capucci L, Mutze GJ, Strive T (2018) Prior exposure to non-pathogenic calicivirus RCV-A1 reduces both infection rate and mortality from Rabbit Haemorrhagic Disease in a population of wild rabbits in Australia. Transboundary Emerg Dis 65(2):e470–e477. https://doi.org/10.1111/tbed.12786

    Article  CAS  Google Scholar 

  • Costanza R, D’Arge R, De Groot R, Farber S, Grasso M, Hannon BR et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260

    Article  CAS  Google Scholar 

  • Cox TE, Strive T, Mutze G, West P (2013) Benefits of Rabbit Biocontrol in Australia. Invasive Animals Cooperative Research Centre, Canberra, Australia, pp 1–42

  • CR2 Centro de Ciencia del Clima y la Resiliencia (2015) La megasequía 2010–2015: Una lección para el futuro. www.cr2.cl/megasequía, Accessed 20 May 2021

  • Croft J, Fleming P, Van de Ven R (2002) The impact of rabbits on a grazing system in eastern New South Wales. 1. Ground cover and pastures. Australian Journal of Experimental Agriculture 42(7):909–916. doi: https://doi.org/10.1071/EA01106

  • Cuevas JG, Van Leersum G (2001) Project “Conservation, restoration, and development of the Juan Fernández islands.” Chile Revista Chilena De Historia Natural 74(4):899–910

    Google Scholar 

  • Dalton KP, Nicieza I, Balseiro A, Muguerza MA, Rosell JM, Casais R, Álvarez ÁL, Parra F (2009) Variant rabbit haemorrhagic disease virus in young rabbits Spain. Emerg Infect Dis 18(12):2009. https://doi.org/10.3201/eid1812.120341

    Article  Google Scholar 

  • Dara SK (2019) The new integrated pest management paradigm for the modern age. J Integr Pest Manage 10(1):1–9. https://doi.org/10.1093/jipm/pmz010

    Article  Google Scholar 

  • Delibes M, Calderon J (1979) Datos sobre la reproducción del conejo, Oryctolagus cuniculus (L.), en Doñana, S.O. de España, Durante un año seco. Doñana Acta Vertebrata 6:91–99

    Google Scholar 

  • Dukes JS, Mooney HA (2004) Disruption of ecosystem processes in western North America by invasive species. Rev Chil Hist Nat 77(3):411–437. https://doi.org/10.4067/S0716-078X2004000300003

    Article  Google Scholar 

  • Dunsmore JD, Williams RT, Price WJ (1971) A winter epizootic of Myxomatosis in subalpine south-eastern Australia. Aust J Zool 19(3):275–286. https://doi.org/10.1071/ZO9710275

    Article  Google Scholar 

  • Elsworth PG, Kovaliski J, Cooke BD (2012) Rabbit haemorrhagic disease: are Australian rabbits (Oryctolagus cuniculus) evolving resistance to infection with Czech CAPM 351 RHDVV? Epidemiol Infect 140(11):1972–1981. https://doi.org/10.1017/S0950268811002743

    Article  CAS  Google Scholar 

  • Elsworth P, Cooke BD, Kovaliski J, Sinclair R, Holmes EC, Strive T (2014) Increased virulence of rabbit haemorrhagic disease virus associated with genetic resistance in wild Australian rabbits (Oryctolagus cuniculus). Virology 464:415–423. https://doi.org/10.1016/j.virol.2014.06.037

    Article  CAS  Google Scholar 

  • Etchegaray P (2005) Virus como control biológico del conejo silvestre europeo (Oryctolagus cuniculus). Tecno Vet (santiago) 11(3):1–5

    Google Scholar 

  • Fenner F (2010) Deliberate introduction of the European rabbit, Oryctolagus cuniculus, into Australia. Revue Scientifique Et Technique (International Office of Epizootics) 29(1):103–111

    CAS  Google Scholar 

  • Fenner F, Fantini B (1999) Biological control of vertebrate damaging species: the history of Myxomatosis, an experiment in evolution. CABI Publishing, pp 1–339

    Book  Google Scholar 

  • Fenner F, Marshall ID (1954) Passive immunity in myxomatosis of the European rabbit (Oryctolagus cuniculus): the protection conferred on kittens born by immune does. Epidemiol Infect 52(3):321–336

    CAS  Google Scholar 

  • Fenner F, Marshall ID (1957) A comparison of the virulence for European rabbits (Oryctolagus cuniculus) of strains of Myxoma virus recovered in the field in Australia. Europe and Am Epidemiol Inf 55(2):149–191. https://doi.org/10.1017/S0022172400037098

    Article  CAS  Google Scholar 

  • Fenner F, Ratcliffe FN (1965) Myxomatosis. Cambridge University Press, pp 1–379

    Google Scholar 

  • Fenner F, Ross J (1994) Myxomatosis: The European rabbit. The history and biology of a successful colonizer. In: Thompson HV, King CM (eds) The encyclopedia of arthropod-transmitted infections. Oxford University Press, Oxford, UK, pp 205–239

    Google Scholar 

  • Fernández A, Sáiz F (2007) The European rabbit (Oryctolagus cuniculus L.) as seed disperser of the invasive opium poppy (Papaver somniferum L.) in Robinson Crusoe Island, Chile. Mastozoología Neotropical 14(1):19–27

  • Ferriére G, Cerda J, Roach R (1983) El conejo silvestre en Chile (Oryctolagus cuniculus L., función fisiológica, ecología). Boletín Técnico 8, CONAF, Santiago, Chile, pp 1–35

  • Figueroa JA, Castro SA, Marquet PA, Jaksic FM (2004) Exotic plant invasions to the mediterranean region of Chile: Causes, history and impacts. Rev Chil Hist Nat 77:465–483. https://doi.org/10.4067/S0716-078X2004000300006

    Article  Google Scholar 

  • Fleury M, Marcelo W, Vásquez RA, González LA, Bustamante RO (2015) Recruitment dynamics of the relict palm, Jubaea chilensis: Intricate and pervasive effects of invasive herbivores and nurse shrubs in central Chile. PLoS ONE 10(7):e0133559. https://doi.org/10.1371/journal.pone.0133559

    Article  CAS  Google Scholar 

  • Flux JE (1994) World distribution. In: Thompson HV, King CM (eds) The European rabbit: The history and biology of a successful colonizer. Oxford University Press, Oxford, pp 8–21

    Google Scholar 

  • Flux JE, Fullagar PJ (1992) World distribution of the Rabbit Oryctolagus cuniculus on islands. Mammal Rev 22(3–4):151–205

    Article  Google Scholar 

  • Fordham D, Akcakaya H, Araujo M, Brook B, Brodie J, Post E, Doak D (2012) Modelling range shifts for invasive vertebrates in response to climate change. In: Brodie J, Post E, Doak D (eds) Wildlife conservation in a changing climate. University of Chicago press, Chicago, Illinois, USA, pp 86–108

    Google Scholar 

  • French RJ, Schultz JE (1984) Water use efficiency of wheat in a Mediterranean-type environment. I. The relation between yield, water use and climate. Australian Journal of Agricultural Research 35(6):743–764. doi: https://doi.org/10.1071/AR9840743

  • Fuentes ER, Simonetti JA (1982) Plant patterning in the Chilean matorral: Are the roles of native and exotic mammals different? In: Conrad CE, Oechel WC (eds) Proceedings of the Symposium on Dynamics and Management of Mediterranean-type Ecosystems. US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, California, USA. General Technical Report PSW-58, pp 227–233.

  • Fuentes ER, Jaksic FM, Simonetti JA (1983) European rabbits versus native rodents in central Chile: Effects on shrub seedlings. Oecologia 58(3):411–414. https://doi.org/10.1007/BF00385244

    Article  Google Scholar 

  • Fullagar PJ (1977) Observations on Myxomatosis in a rabbit population with immune adults. Australian Wildlife Research 4(3):263–280. https://doi.org/10.1071/WR9770263

    Article  Google Scholar 

  • Fuller HE, Chasey D, Lucas MH, Gibbens JC (1993) Rabbit Haemorrhagic Disease in the United Kingdom. Veterinary Record 133(25–26):611–613

    CAS  Google Scholar 

  • Gader R (1986) Incidencia de vertebrados en las forestaciones de coníferas del sur de Neuquén. Centro de Ecología Aplicada del Neuquén (CEAN), Informe Técnico, Argentina, pp 1–11

  • Gálvez M, Ojeda P (2002) Programa de control del conejo europeo: Informe gira técnica a Australia. Informe Técnico 31 CONAF. In: Proyecto “Conservación, Restauración y Desarrollo del Archipiélago de Juan Fernández”. Valparaíso, Chile, pp 1–19

  • Gálvez-Bravo L (2011) Conejo Oryctolagus cuniculus (Linnaeus, 1758), Enciclopedia Virtual de los Vertebrados Españoles. Salvador A, Barja I (eds) CSIC-Museo Nacional de Ciencias Naturales, Madrid, Spain, pp 1–25 doi: https://doi.org/10.20350/digitalCSIC/8864

  • Gibb JA (1990) The European rabbit Oryctolagus cuniculus. In: Chapman JA, Flux JE (eds) Rabbits, Hares and Pikas. IUCN, Gland, Switzerland, pp 116–120

    Google Scholar 

  • Gibb JA, Williams J (1994) The rabbit in New Zealand. In: Thompson HV, King CM (eds) The European Rabbit: The History and Biology of a Successful Colonizer. Oxford University Press, Oxford, UK, pp 158–204

    Google Scholar 

  • Gilbert N, Myers K, Cooke BD, Dunsmore JD, Fullagar PJ, Gibb JA, King DR, Parer I, Wheeler SH, Wood DH (1987) Comparative dynamics of Australasian rabbit populations. Australian Wildlife Research 14(4):491–503. https://doi.org/10.1071/WR9870491

    Article  Google Scholar 

  • Gong W, Sinden J, Braysher M, Jones R (2009) The Economic Impact of Vertebrate pest in Australia. University of Canberra, Canberra, Australia, Invasive Animals Cooperative Research Centre, pp 1–47

    Google Scholar 

  • Guelfi JF, Ganiere JP, Plassian G, Andre-fontaine G, Debailleul M (1993) Modifications hématologiques observées dans la maldie hémorragique virale du lapin. Recueil Medicine Veterinaire 169(2):93–99

    Google Scholar 

  • Gutiérrez HD (2015) Percepciones y propuestas sobre conservación, amenazas y restauración de la biodiversidad desde la perspectiva de la comunidad del Archipiélago Juan Fernández, Chile, Honors Thesis, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile, pp 1–78

  • Hall RN, Huang N, Roberts J, Strive T (2019) Carrion flies as sentinels for monitoring Lagovirus activity in Australia. Transbound Emerg Dis 66(5):2025–2032. https://doi.org/10.1111/tbed.13250

    Article  Google Scholar 

  • Hall RN, King T, O’Connor T, Read AJ, Arrow J, Trought K, Duckworth J, Piper M, Strive T (2021) Age and infectious dose significantly affect disease progression after RHDV2 infection in naive domestic rabbits. Viruses 13(6):1184. https://doi.org/10.3390/v13061184

    Article  Google Scholar 

  • Hanski I, Henttonen H, Korpimäki E, Oksanen L, Turchin P (2001) Small-rodent dynamics and predation. Ecology 82(6):1505–1520. https://doi.org/10.1890/0012-9658(2001)082[1505:SRDAP]2.0.CO;2

    Article  Google Scholar 

  • Hansen T, Stenseth N, Henttonen H (1999) Multiannual vole cycles and population regulation during long winters: an analysis of seasonal density-dependence. Am Nat 154:129–139

    Article  Google Scholar 

  • Hansson L (1971) Small rodent food, feeding and population dynamics. Oikos 22(2):183–198. https://doi.org/10.2307/3543724

    Article  Google Scholar 

  • Hansson L (1979) Food as a limiting factor for small rodent numbers: Tests of two hypotheses. Oecologia 37(3):297–314

    Article  Google Scholar 

  • Hansson L (1987) An interpretation of rodent dynamics as due to trophic interactions. Oikos 50(3):308–318. https://doi.org/10.2307/3565491

    Article  Google Scholar 

  • Hayward JS (1961) The ability of the wild rabbit to survive conditions of water restriction. Australian Wildlife Research 6(2):160–175. https://doi.org/10.1071/CWR9610160

    Article  Google Scholar 

  • Henning J, Meers J, Davies PR, Morris RS (2005) Survival of Rabbit Haemorrhagic Disease Virus (RHDV) in the environment. Epidemiol Infect 133(4):719–730. https://doi.org/10.1017/S0950268805003766

    Article  CAS  Google Scholar 

  • Holden C, Mutze G (2002) Impact of Rabbit Haemorrhagic Disease on introduced predators in the Flinders Ranges. South Australia Australian Wildlife Research 29(6):615–626. https://doi.org/10.1071/WR00101

    Article  Google Scholar 

  • Huang HB (1991) Vaccination against and immune response to Viral Haemorrhagic Disease of rabbits: A review of research in the People’s Republic of China. Revue Scientifique Et Technique (International Office of Epizootics) 10(2):481–498

    CAS  Google Scholar 

  • Hurst EW (1937) Myxoma and the Shope fibroma. I. The histology of Myxoma. Br J Exp Pathol 18:1–15

    Google Scholar 

  • INFOR, Instituto Forestal (2017) Anuario Forestal 2017, Boletín Estadístico 159. https://wef.infor.cl/publicaciones/publicaciones.php. Santiago, Chile, pp 1–188

  • Iriarte A (2008) Mamíferos de Chile. Lynx Edicions. Barcelona, Spain, pp 1–221

    Google Scholar 

  • Iriarte JA, Jaksic FM (1986) The fur trade in Chile: an overview of seventy-five years of export data (1910–1984). Biol Cons 38(3):243–253. https://doi.org/10.1016/0006-3207(86)90124-2

    Article  Google Scholar 

  • Iriarte JA, Jimenez JE, Contreras LC, Jaksic FM (1989) Small-mammal availability and consumption by the fox, Dusicyon culpaeus, in central Chilean scrublands. J Mammal 70(3):641–645. https://doi.org/10.2307/1381441

    Article  Google Scholar 

  • Iriarte JA, Feinsinger P, Jaksic FM (1997) Trends in wildlife use and trade in Chile. Biol Cons 81(1–2):9–20. https://doi.org/10.1016/S0006-3207(96)00150-4

    Article  Google Scholar 

  • Isla M, Katunaric M (2006) El conejo europeo (Oryctolagus cuniculus): De plaga a subsidio de la naturaleza. Honors Thesis, Facultad de Ciencias Agrónomicas, Universidad de Chile, Santiago, Chile, pp 1–35

  • Jaksic FM (1986) Predation upon small mammals in shrublands and grasslands of southern South America: Ecological correlates and presumable consequences. Rev Chil Hist Nat 59:209–221

    Google Scholar 

  • Jaksic FM (1998) Vertebrate invaders and their ecological impacts in Chile. Biodivers Conserv 7(11):1427–1445. https://doi.org/10.1023/A:1008825802448

    Article  Google Scholar 

  • Jaksic FM, Castro SA (2014) Invasiones biológicas en Chile: Causas globales e impactos locales. Ediciones Universidad Católica de Chile. Santiago, Chile, pp 1–526

    Google Scholar 

  • Jaksic FM, Castro SA (2021) Biological invasions in the South American Anthropocene: Global causes and local impacts. Springer Nature AG. Cham, Switzerland, pp 1–346. https://link.springer.com/book/https://doi.org/10.1007/978-3-030-56379-0

  • Jaksic FM, Fuentes ER (1980) Why are native herbs in the Chilean matorral more abundant beneath bushes: Microclimate or grazing? J Ecol 68(2):665–669. https://doi.org/10.2307/2259427

    Article  Google Scholar 

  • Jaksic FM, Fuentes ER (1988) El conejo español: ¿Un convidado de piedra? In: Fuentes E, Prenafeta S (eds) Ecología del paisaje en Chile central: Estudios sobre sus espacios montañosos. Ediciones Universidad Católica de Chile, Santiago, Chile, pp 88–101

    Google Scholar 

  • Jaksic FM, Fuentes ER (1991) Ecology of a successful invader: The European rabbit in central Chile. In: Groves RH, di Castri F (eds) Biogeography of mediterranean invasions. Cambridge University Press, Cambridge, UK, pp 273–283

    Chapter  Google Scholar 

  • Jaksic FM, Ostfeld RS (1983) Numerical and behavioral estimates of predation upon rabbits in mediterranean-type shrublands: A paradoxical case. Rev Chil Hist Nat 56:39–49

    Google Scholar 

  • Jaksic FM, Soriguer RC (1981) Predation upon the European rabbit (Oryctolagus cuniculus) in mediterranean habitats of Chile and Spain: A comparative analysis. Journal Animal Ecology 50(1):269–281. https://doi.org/10.2307/4044

    Article  Google Scholar 

  • Jaksic FM, Yáñez J (1980) ¿Quién controla las poblaciones de conejos introducidos? Medio Ambiente (Valdivia) 4(2):41–44

    Google Scholar 

  • Jaksic FM, Yáñez J (1983) Rabbit and fox introduction in Tierra del Fuego: History and assessment of the attempts at biological control of the rabbit infestation. Biol Cons 26(4):367–374. https://doi.org/10.1016/0006-3207(83)90097-6

    Article  Google Scholar 

  • Jaksic FM, Fuentes ER, Yáñez JL (1979a) Two types of adaptation of vertebrate predators to their prey. Archivos De Biología y Medicina Experimentales (Santiago) 12:143–152

    Google Scholar 

  • Jaksic FM, Fuentes ER, Yáñez JL (1979b) Spatial distribution of the Old World rabbit (Oryctolagus cuniculus) in central Chile. J Mammal 60(1):207–209. https://doi.org/10.2307/1379775

    Article  Google Scholar 

  • Jaksic FM, Schlatter RP, Yáñez JL (1980) Feeding ecology of central Chilean foxes, Dusicyon culpaeus and Dusicyon griseus. J Mammal 61(2):254–260. https://doi.org/10.2307/1380046

    Article  Google Scholar 

  • Jaksic FM, Iriarte JA, Jiménez JE, Martínez DR (2002) Invaders without frontiers: Cross-border invasions of exotic mammals. Biol Invasions 4(1):157–173. https://doi.org/10.1023/A:1020576709964

    Article  Google Scholar 

  • Jenckel M, Hall RN, Strive T (2021) First description of Hepatitis E virus in Australian rabbits. Aust Vet J 99(8):356–358. https://doi.org/10.1111/avj.13073

    Article  CAS  Google Scholar 

  • Jernelöv A (2017) The Long-Term Fate of Invasive Species. Aliens forever or integrated immigrants with time? Springer International Publishing, Swedish Institute for Future Studies. Cham, Sweden, pp 1–302. doi: https://doi.org/10.1007/978-3-319-55396-2

  • Jiménez JE, Jaksic FM (1989) Behavioral ecology of grey eagle-buzzards, Geranoaetus melanoleucus, in central Chile. Condor 91(4):913–921. https://doi.org/10.2307/1368076

    Article  Google Scholar 

  • Jiménez JE, Jaksic FM (1990) Diet of Gurney’s Buzzard in the puna of northernmost Chile. The Wilson Bulletin 102(2):344–346

    Google Scholar 

  • Jiménez JE, Jaksic FM (1991) Behavioral ecology of Red-backed Hawks in central Chile. Wilson Bulletin 103(1):132–137

    Google Scholar 

  • Joubert L, Leftheriotis E, Mouchet J (1972) Myxomatosis, Volume 1. L’expansion Scientifique Francaise, Paris, France, pp 1–334

  • Kahler W (1953) La isla Juan Fernández. Revista En Viaje, Ferrocarriles del Estado. Santiago, Chile, pp 238–315.

  • Keeley SC, Johnson AW (1977) A comparison of the pattern of herb and shrub growth in comparable sites in Chile and California. Am Midl Nat 97(1):120–132. https://doi.org/10.2307/2424690

    Article  Google Scholar 

  • Kerr PJ (2012) Myxomatosis in Australia and Europe: A model for emerging infectious diseases. Antiviral Res 93(3):387–415

    Article  CAS  Google Scholar 

  • Kerr PJ, Donnelly TM (2013) Viral infections of rabbits. The Veterinary Clinics of North America. Exotic Animal Practice 16(2):437–468. doi: https://doi.org/10.1016/j.cvex.2013.02.002

  • Kerr PJ, Ghedin E, DePasse JV, Fitch A, Cattadori IM, Hudson PJ et al (2012) Evolutionary history and attenuation of myxoma virus on two continents. PLoS Pathog 8(10):e1002950. https://doi.org/10.1371/journal.ppat.1002950

    Article  CAS  Google Scholar 

  • Kerr PJ, Liu J, Cattadori I, Ghedin E, Read AF, Holmes EC (2015) Myxoma virus and the leporipoxviruses: An evolutionary paradigm. Viruses 7(3):1020–1061. https://doi.org/10.3390/v7031020

    Article  Google Scholar 

  • King DR, Wheeler SH (1985) The European rabbit in south-western Australia I. Study sites and population dynamics. Australian Wildlife Research 12(2):183–196. doi: https://doi.org/10.1071/WR9850183

  • King DR, Wheeler SH, Robinson MH (1984) Daytime locations of European rabbits at three localities in south-western Australia. Australian Wildlife Research 11(1):89–92. https://doi.org/10.1071/WR9840089

    Article  Google Scholar 

  • Knoepp JD, Coleman DC, Crossley DA Jr, Clark JS (2000) Biological indices of soil quality: an ecosystem case study of their use. For Ecol Manage 138(1–3):357–368. https://doi.org/10.1016/S0378-1127(00)00424-2

    Article  Google Scholar 

  • Kolb HH (1991) Use of burrows and movements of wild rabbit (Oryctolagus cuniculus) in an area of hill grazing and forestry. J Appl Ecol 28(3):892–905. https://doi.org/10.2307/2404215

    Article  Google Scholar 

  • Kolb HH (1994) The use of cover and burrows by a population of rabbits (Mammalia: Oryctolagus cuniculus) in eastern Scotland. J Zool Lond 233(1):9–17. https://doi.org/10.1111/j.1469-7998.1994.tb05258.x

    Article  Google Scholar 

  • Kucukvar M, Onat N, Abdella G, Tatari O (2019) Assessing regional and global environmental footprints and value added of the largest food producers in the world. Resour Conserv Recycl 144:187–197. https://doi.org/10.1016/j.resconrec.2019.01.048

    Article  Google Scholar 

  • Krupová Z, Wolfová M, Krupa E, Volek Z (2020) Economic values of rabbit traits in different production systems. Animal 14(9):1943–1951. https://doi.org/10.1017/S1751731120000683

    Article  Google Scholar 

  • Lataste F (1892) A propos de lapins domestiques. Actas De La Societé Scientifique Du Chili 2:210–222

    Google Scholar 

  • Le Gall-Reculé G, Lavazza A, Marchandeau S, Bertagnoli S, Zwingelstein F, Cavadini P, Martinelli N, Lombardi G, Guérin JL, Lemaitre E, Decors A (2013) Emergence of a new Lagovirus related to Rabbit Haemorrhagic Disease Virus. Vet Res 44(1):1–13. https://doi.org/10.1186/1297-9716-44-81

    Article  CAS  Google Scholar 

  • Lees AC, Bell DJ (2008) A conservation paradox for the 21st century: The European wild rabbit Oryctolagus cuniculus, an invasive alien and an endangered native species. Mammal Rev 38(4):304–320. https://doi.org/10.1111/j.1365-2907.2008.00116.x

    Article  Google Scholar 

  • Lenghaus C (1993) Rabbit Haemorrhagic Disease assessing the potential of a new virus to control wild rabbits in Australia. Veterinary Pathology Report 33:25–27

    Google Scholar 

  • Lenghaus C, Westbury H, Collins B, Ratnamoban N, Morrissy C (1994) Overview of the RHDV project in the Australian Animal Health Laboratory. In: Munro RK, Williams RT (eds) Rabbit Haemorrhagic Disease: Issues in assessment for biological control. Canberra (Australia): Bureau of Resource Sciences, Australian Government Printing Services. Canberra, Australia, pp 104–129

  • Liu SJ, Xue HP, Pu BQ, Qian NH (1984) A new viral disease in rabbits. Animal Husbandry & Veterinary Medicine 16(6):253–255

    Google Scholar 

  • Liu SJ, Fordham DA, Cooke BD, Cox T, Mutze G, Strive T (2014) Distribution and prevalence of the Australian non-pathogenic rabbit Calicivirus is correlated with rainfall and temperature. PLoS ONE 9(12):e113976. https://doi.org/10.1371/journal.pone.0113976

    Article  CAS  Google Scholar 

  • Lombardi L, Fernández N, Moreno S, Villafuerte R (2003) Habitat-related differences in rabbit (Oryctolagus cuniculus) abundance, distribution, and activity. J Mammal 84(1):26–36. https://doi.org/10.1644/1545-1542(2003)084%3c0026:HRDIRO%3e2.0.CO;2

    Article  Google Scholar 

  • Long J. (2003) Introduced Mammals of the World. Their history, distribution and influence. CSIRO Publishing, Victoria, Australia, pp 1–23

  • Lurgi M, Wells K, Kennedy M, Campbell S, Fordham D (2016) A landscape approach to invasive species management. PLoS ONE 11(7):e0160417. https://doi.org/10.1371/journal.pone.0160417

    Article  CAS  Google Scholar 

  • Lurgi M, Ritchie E, Fordham D (2018) Eradicating abundant invasive prey could cause unexpected and varied biodiversity outcomes: The importance of multispecies interactions. J Appl Ecol 55(5):2396–2407. https://doi.org/10.1111/1365-2664.13188

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale M, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10(3):689–710. https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

    Article  Google Scholar 

  • Mann G (1981) Análisis del plan de manejo y situación actual del Parque Nacional Juan Fernández. Informe 34 CONAF, Valparaíso, Chile, pp 1–72

  • Marlier D, Mainil J, Linde A, Vindevogel H (2000) Infectious agents associated with rabbit pneumonia: Isolation of amyxomatous Myxoma virus strains. Vet J 159(2):171–178. https://doi.org/10.1053/tvjl.1999.0413

    Article  CAS  Google Scholar 

  • Marticorena C, Stuessy TF, Baeza C (1998) Catalogue of the vascular flora of the Robinson Crusoe or Juan Fernández islands, Chile. Gayana Botánica 55:187–211

    Google Scholar 

  • Martins H, Barbosa H, Hodgson M, Borralho R, Rego F (2003) Effect of vegetation type and environmental factors on european wild rabbit (Oryctolagus cuniculus) counts in a southern Portuguese montado. Acta Theriol 48(3):385–398. https://doi.org/10.1007/BF03194177

    Article  Google Scholar 

  • Matthei O, Marticorena C, Stuessy TF (1993) La flora adventicia del Archipiélago de Juan Fernández. Gayana Botanica 50(2):69–102

    Google Scholar 

  • McColl KA, Merchant JC, Hardy J, Cooke BD, Robinson A, Westbury HA (2002) Evidence for insect transmission of Rabbit Haemorrhagic Disease Virus. Epidemiol Infect 129(3):655–663. https://doi.org/10.1017/S0950268802007756

    Article  CAS  Google Scholar 

  • McLeod R (2016) Cost of Pest Animals in NSW and Australia, 2013–2014. eSYS Development Pty Ltd, NSW Natural Resources Commission. Centre for Invasive Species Solutions, PestSmart, pp 1–36

  • MEA, Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-Being: Opportunities and Challenges for Business and Industry. Island Press, Washington, DC, USA, pp 1–36

    Google Scholar 

  • Mellin C, Lurgi M, Matthews S, Macneil MA, Caley MJ, Bax N, Przeslawski R, Fordham DA (2016) Forecasting marine invasions under climate change: biotic interactions and demographic processes matter. Biol Cons 204:459–467. https://doi.org/10.1016/j.biocon.2016.11.008

    Article  Google Scholar 

  • Merritt J, Lima M, Bozinovic F (2001) Seasonal regulation in fluctuating small mammal populations: feedback structure and climate. Oikos 94(3):505–514

    Article  Google Scholar 

  • MINAGRI, Ministerio de Agricultura (2015) Informe sanidad animal. http://www.sag.cl/sites/default/ files/informe_situacion_sanitaria_animal-2015.pdf. Accessed 21 May 2021

  • Mitchell B, Balogh S (2007) Monitoring techniques for vertebrate damaging speciess: feral cats. NSW Department of Primary Industries. Bureau of Rural Sciences, New South Wales, Australia, pp 1–58

  • MMA, Ministerio del Medio ambiente, (2014) Quinto Informe Nacional de Biodiversidad de Chile, Convenio sobre la Diversidad Biológica (CBD). Santiago, Chile, pp 1–142

    Google Scholar 

  • Mohamed F, Gidlewski T, Berninger ML, Petrowski HM, Bracht AJ, de Rueda CB, Barrette RW, Grady M, O’Hearn ES, Lewis CE, Moran KE (2021) Comparative susceptibility of eastern cottontails and New Zealand white rabbits to classical Rabbit Haemorrhagic Disease Virus (RHDV) and RHDV2. Transbound Emerg Dis. https://doi.org/10.1111/tbed.14381

    Article  Google Scholar 

  • Monnerot M, Vigne JD, Biju-Duval C, Casane D, Callou C, Hardy C, Mougel F, Soriguer R, Dennebouy N, Mounolou JC (1994) Rabbit and man: genetic and historic approach. Genet Sel Evol 26(Supplement 1):167–182

    Article  Google Scholar 

  • Moreno S, Villafuerte R, Delibes M (1996) Cover is safe during the day but dangerous at night: The use of vegetation by European wild rabbits. Can J Zool 74(9):1656–1660. https://doi.org/10.1139/z96-183

    Article  Google Scholar 

  • Morisse JP (1989) La maladie hémorragique virale du lapin (VHD). Etat des recherches et évolution de la maladie un an après son apparition en France. L’éleveur Des Lapins 26:18–27

    Google Scholar 

  • Morisse JP, Le Gall G, Boilletot E (1991) Hepatitis of viral origine in Leporidae: Introduction and aetiological hypotheses. Revue Scientifique Et Technique (International Office of Epizootics) 10(2):283–298

    Google Scholar 

  • Mutze G (2016) Barking up the wrong tree? Are livestock or rabbits the greater threat to rangeland biodiversity in southern Australia? Rangel J 38(6):523–531. https://doi.org/10.1071/RJ1604

    Article  Google Scholar 

  • Mutze G, Cooke B, Alexander P (1998) The initial impact of Rabbit Haemorrhagic Disease on European rabbit populations in South Australia. J Wildl Dis 34(2):221–227. https://doi.org/10.7589/0090-3558-34.2.221

    Article  CAS  Google Scholar 

  • Mutze G, Bird P, Kovaliski J, Peacock D, Jennings S, Cooke B (2002) Emerging epidemiological patterns in Rabbit Haemorrhagic Disease, its interaction with Myxomatosis, and their effects on rabbit populations in South Australia. Australian Wildlife Research 29(6):577–590. https://doi.org/10.1071/WR00100

    Article  Google Scholar 

  • Mutze G, Bird P, Cooke B, Henzell R (2008) Geographic and seasonal variation in the impact of Rabbit Haemorrhagic Disease on European rabbits, Oryctolagus cuniculus, and rabbit damage in Australia. In: Alves PC, Ferrand N, Hackländer K (eds) Lagomorph Biology: Evolution. Ecology and Conservation, Springer-Verlag, Berlin, pp 279–293

    Chapter  Google Scholar 

  • Mutze G, Kovaliski J, Butler K, Capucci L, Mcphee, (2010) The effect of rabbit population control programmes on the impact of Rabbit Haemorrhagic Disease in south-eastern Australia. J Appl Ecol 47(5):1137–1146. https://doi.org/10.1111/j.1365-2664.2010.01844.x

    Article  Google Scholar 

  • Myers K (1964) Influence of density on fecundity, growth rates, and mortality in the wild rabbit. Australian Wildlife Research 9(2):134–137. https://doi.org/10.1071/CWR9640134

    Article  Google Scholar 

  • Myers K, Bults HG (1977) Observations on changes in the quality of food eaten by the wild rabbit. Aust J Ecol 2(2):215–229. https://doi.org/10.1111/j.1442-9993.1977.tb01139.x

    Article  Google Scholar 

  • Myers K, Parker BS (1975) A study of the biology of the wild rabbit in climatically different regions in Eastern Australia. VI. Changes in numbers and distribution related to climate and land systems in semiarid Northwestern New South Wales. Australian Wildlife Research 2(1):11–32. https://doi.org/10.1071/WR9750011

  • Myers K, Poole WE (1963) A study of the biology of the wild rabbit, Oryctolagus cuniculus (L.), in confined populations IV. The effects of rabbit grazing on sown pastures. Journal of Ecology 51(2):435–451. doi: https://doi.org/10.2307/2257695

  • Myers K, Parer I, Wood D, Cooke BD (1994) The rabbit in Australia. In: Thompson K, King CM (eds) The European rabbit. The history and biology of a successful colonizer. Oxford University Press Inc., Oxford, UK, pp 108–157

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  Google Scholar 

  • Neave MJ, Hall RN, Huang N, McColl KA, Kerr P, Hoehn M, Taylor J, Strive T (2018) Robust innate immunity of young rabbits mediates resistance to Rabbit Hemorrhagic Disease caused by Lagovirus europaeus GI. 1 but not GI. 2. Viruses. 10(9):512. doi: https://doi.org/10.3390/v10090512

  • Neimanis AS, Ahola H, Pettersson UL, Lopes AM, Abrantes J, Zohari S, Esteves PJ, Gavier-Widén D (2018) Overcoming species barriers: An outbreak of Lagovirus europaeus GI. 2/RHDV2 in an isolated population of mountain hares (Lepus timidus). BMC Veterinary Research. 14(1):1–2. doi: https://doi.org/10.1186/s12917-018-1694-7

  • Newsome AE (1966) Estimating severity of drought. Nature 209(5026):904. https://doi.org/10.1038/209904a0

    Article  Google Scholar 

  • Newsome AE (1990) The control of vertebrate pests by vertebrate predators. Trends Ecol Evol 5(6):187–191. https://doi.org/10.1016/0169-5347(90)90208-U

    Article  CAS  Google Scholar 

  • Newsome AE, Parer I, Catling P (1989) Prolonged prey suppression by carnivores: Predator-removal experiments. Oecologia 78(4):458–467. https://doi.org/10.1007/BF00378734

    Article  CAS  Google Scholar 

  • Nyström K, Le Gall-Recule G, Grassi P, Abrantes J, Ruvoen-Clouet N, Le Moullac-Vaidye B et al (2011) Histo-blood group antigens act as attachment factors of Rabbit Hemorrhagic Disease Virus infection in a virus strain-dependent manner. PLoS Pathogy 7(8):e1002188. https://doi.org/10.1371/journal.ppat.1002188

    Article  CAS  Google Scholar 

  • ODEPA, Oficina de Planificación Agraria (2021a) Boletín de Carne, mayo 2021. In: https://www.odepa.gob.cl/rubros/carnes Accessed 10 April 2021

  • ODEPA, Oficina de Planificación Agraria (2021a) Boletín de Carne (2021b) Boletín de Fruta, mayo 2021. https://www.odepa.gob.cl/publicaciones/boletines/boletin-de-fruta-mayo-2021 Accessed 6 May 2021

  • OIE, Organización Mundial de Sanidad Animal (2018) Código Sanitario para los Animales terrestres 8ª edición. Volumen 1–3, Organización Mundial de Sanidad Animal OIE-WAHIS, pp 1–1833

  • Ojeda P, Sáiz F (2001) Evaluación de la densidad poblacional de Oryctolagus cuniculus durante el proceso de erradicación, Informe técnico N. 27, Proyecto “Conservación, Restauración y Desarrollo del Archipiélago de Juan Fernández”, CONAF, Santiago, Chile, pp 1–27

  • Ojeda P, González H, Araya G (2003) Erradicación del conejo europeo Oryctolagus cuniculus Linnaeus desde la Isla Santa Clara Archipiélago de Juan Fernández. Informe Técnico 48, Conservación restauración y desarrollo del Archipiélago de Juan Fernández, CONAF, Santiago, Chile, pp 1–31

  • Parer I (1977) The population ecology of the wild rabbit Oryctolagus cuniculus (L.) in a Mediterranean-type climate in New South Wales. Australian Wildlife Research 4(2):171–205. doi: https://doi.org/10.1071/WR9770171

  • Parer I, Libke JA (1985) Distribution of rabbit, Oryctolagus cuniculus, warrens in relation to soil type. Australian Wildlife Research 12(3):387–405. https://doi.org/10.1071/WR9850387

    Article  Google Scholar 

  • Parer I, Sobey WR, Conolly DI (1987) Reproduction of the wild rabbit (Oryctolagus cuniculus) under varying degrees of confinement. Melbourne, Vic., CSIRO.

  • Pavez EF (2020) Presencia de cóndores (Vultur gryphus) en el área urbana de Santiago. Chile Revista Chilena De Ornitología 26(1):26–32

    Google Scholar 

  • Pavez EF, González CA, Jiménez JE (1992) Diet shifts of black-chested eagle (Geranoaetus melanoleucus) from native prey to European rabbits in Chile. Journal of Raptor Research 26(1):27–32

    Google Scholar 

  • Pavez EF, Lobos GA, Jaksic FM (2010) Cambios de largo plazo en el paisaje y los ensambles de micromamíferos y rapaces en Chile central. Rev Chil Hist Nat 83(1):99–111. https://doi.org/10.4067/S0716-078X2010000100006

    Article  Google Scholar 

  • Peacock D, Abbott I (2013) The role of quoll (Dasyurus) predation in the outcome of pre-1900 introductions of rabbits (Oryctolagus cuniculus) to the mainland and islands of Australia. Aust J Zool 61(3):206–280

    Article  Google Scholar 

  • Pech RP, Hood GM (1998) Foxes, rabbits, alternative prey and rabbit calicivirus disease: consequences of a new biological control agent for an outbreaking species in Australia. J Appl Ecol 35(3):434–453. https://doi.org/10.1046/j.1365-2664.1998.00318.x

    Article  Google Scholar 

  • Pedler RD, Brandle R, Read JL, Southgate R, Bird P, Moseby KE (2016) Rabbit biocontrol and landscape-scale recovery of threatened desert mammals. Conserv Biol 30(4):774–782. https://doi.org/10.1111/cobi.12684

    Article  Google Scholar 

  • Pine RH, Miller SD, Schamberger ML (1979) Contributions to the mammalogy of Chile. Mammalia 43:339–376

    Article  Google Scholar 

  • PNUD, Programa de las Naciones Unidas para el Desarrollo (2017a) Valoración económica del impacto de siete especies exóticas invasoras sobre los sectores productivos y la biodiversidad en Chile. Proyecto GEF/MMA/PNUD EEI AJF, Programa de las Naciones Unidas para el Desarrollo, Santiago, Chile, pp 1–144

  • PNUD, Programa de las Naciones Unidas para el Desarrollo (2017b) Experiencias de control de especies exóticas invasoras en Áreas Silvestres Protegidas del Estado: 11 casos emblemáticos. Santiago de Chile, Programa de las Naciones Unidas para el Desarrollo pp. 94

  • Poole WE (1960) Breeding of the of wild rabbit, Oryctolagus cuniculus (L.), in relation to the environment. Australian Wildlife Research 5(1):21–43. doi: https://doi.org/10.1071/CWR9600021

  • Ramsey DS, Cox T, Strive T, Forsyth DM, Stuart I, Hall R, Elsworth P, Campbell S (2020) Emerging RHDV2 suppresses the impact of endemic and novel strains of RHDV on wild rabbit populations. J Appl Ecol 57(3):630–641. https://doi.org/10.1111/1365-2664.13548

    Article  CAS  Google Scholar 

  • Read J, Bowen Z (2001) Population dynamics, diet and aspects of the biology of feral cats and foxes in arid South Australia. Australian Wildlife Research 28(2):195–203. https://doi.org/10.1071/WR99065

    Article  Google Scholar 

  • Ridpath MG, Brooker MG (1986) The breeding of the Wedgetail-eagle Aquila audax in relation to its food supply in arid Western Australia. Ibis 128:177–194. https://doi.org/10.1111/j.1474-919X.1986.tb02668.x

    Article  Google Scholar 

  • Richardson BJ (2001) Calicivirus, Myxoma virus and the Wild rabbit in Australia: A tale of three invasions. In: Smith GL, Irving WL, McCauley JW, Rowlands DJ (eds) New challenges to health: the threat of virus infection. Cambridge University Press, UK, pp 67–88

    Chapter  Google Scholar 

  • Risam K, Das GK, Bhasin V (2005) Rabbit for meat and wool production in India: A review. Indian Journal of Animal Sciences 75(3):365–382

    Google Scholar 

  • Rodríguez JA (1988) Alternativas de control de lagomorfos en plantaciones forestales. Ciencia e Investigación Forestal (Santiago) 2(2):74–85. https://doi.org/10.52904/0718-4646.1988.51

    Article  Google Scholar 

  • Rodríguez JA, Trevizan J (1984) El conejo silvestre: (Oryctolagus cuniculus) como vertebrado plaga. Informe, Facultad Ciencias Agrarias y Forestales, Universidad de Chile, Santiago, Chile pp 1–32

  • Rogers PM, Myers K (1979) Ecology of the European wild rabbit, Oryctolagus cuniculus (L.), in mediterranean habitats. Journal of Applied Ecology 16(3):691–703. doi: https://doi.org/10.2307/2402846

  • Rogers PM, Arthur CP, Soriguer RC (1994) The rabbit in continental Europe. In: Thompson HV, King CM (eds) The European rabbit: The history and biology of a successful colonizer. Oxford University Press, Oxford, UK, pp 22–63

    Google Scholar 

  • Rosell JM, Badiola JI, Perez A, Badiola JJ, Garcia JA, Vargas MA (1989) Enfermedad vírica hemorrágica del conejo. I. Epizootiológica y clínica. Monografías de Medicina Veterinaria (Santiago) 6(5):275–284

  • Ross J, Tittensor AM, Fox AP, Sanders MF (1989) Myxomatosis in farmland rabbit populations in England and Wales. Epidem Inf 103(2):333–357. https://doi.org/10.1017/S0950268800030703

    Article  CAS  Google Scholar 

  • Royama T (1992) Analytical population dynamics. Springer Science and Business Media.

  • Roy-Dufresne E, Lurgi M, Brown SC, Wells K, Cooke B, Mutze G et al (2019) The Australian National Rabbit Database: 50 yr of population monitoring of an invasive species. Ecology 100(7):1. https://doi.org/10.1002/ecy.2750

    Article  Google Scholar 

  • Rubio AV, Alvarado R, Bonacic C (2013) Introduced European rabbit as main prey of the native carnivore Culpeo fox (Lycalopex culpaeus) in disturbed ecosystems of central Chile. Studies on Neotropical Fauna and Environment 48(2):89–94. https://doi.org/10.1080/01650521.2013.831521

    Article  Google Scholar 

  • SAG, Servicio Agrícola y Ganadero (2019) Lista de enfermedades de denuncia obligatoria (EDO) al SAG. División de Protección Pecuaria, Departamento de Sanidad Animal, Santiago, Chile, pp 1.-8

  • SAG, Servicio Agrícola y Ganadero (2020) Ficha técnica: Enfermedad Hemorrágica del conejo. AG. División de Protección Pecuaria, Departamento de Sanidad Animal, Santiago, Chile, pp 1–3

  • Sáiz GF, De la Hoz E, Toro H, Zuniga L, Vasquez E, Cossio F et al (1982) Proposición de un método de control integrado del conejo en el archipiélago de Juan Fernández. Universidad Católica de Valparaíso. Valparaíso, Chile, pp 1–96

    Google Scholar 

  • Saunders G, Choquenot D, McIlroy J, Packwood R (1999) Initial effects of Rabbit Haemorrhagic Disease on free-living rabbit (Oryctolagus cuniculus) populations in central-western New South Wales. Australian Wildlife Research 26(1):69–74. https://doi.org/10.1071/WR98031

    Article  Google Scholar 

  • Saunders G, Mcllroy J, Berghout M, Kay B, Gifford E, Perry R, Van de Ven R (2002) The effects of induced sterility on the territorial behaviour and survival of foxes. Journal of Applied Ecology 39(1):56–66. https://www.jstor.org/stable/827219

  • Schlatter RP, Yáñez JL, Núñez H, Jaksic FM (1980) The diet of the Burrowing Owl in central Chile and its relation to prey size. Auk 97(3):616–619. https://www.jstor.org/stable/4085854

  • Schwensow NI, Cooke B, Kovaliski J, Sinclair R, Peacock D, Fickel J, Sommer S (2014) Rabbit Haemorrhagic Disease: Virus persistence and adaptation in Australia. Evol Appl 7(9):1056–1067. https://doi.org/10.1111/eva.12195

    Article  Google Scholar 

  • Seif E, Pederson D (1978) Effect of rainfall on the grain yield of spring wheat, with an application to the analysis of adaptation. Aust J Agric Res 29(6):1107–1115. https://doi.org/10.1071/AR9781107

    Article  Google Scholar 

  • Sharp BR, Bowman DM (2004) Patterns of long-term woody vegetation change in a sandstone-plateau savanna woodland, Northern Territory. Australia Journal of Tropical Ecology 20(3):259–270. https://doi.org/10.1017/S0266467403001238

    Article  Google Scholar 

  • Shepherd R (1980) The European rabbit flea Spilopsyllus cuniculi (Dale) in Australia Its use as a vector of Myxomatosis. In: Traub R, Starcke H (eds) Fleas. AA Balkema. Rotterdam, The Netherlands, pp 301–307

  • Simonetti JA (1983) Effects of goats upon native rodents and European rabbits in the Chilean matorral. Rev Chil Hist Nat 56:27–30

    Google Scholar 

  • Simonetti JA (1986) Human-induced dietary shift in Dusicyon culpaeus. Mammalia 50(3):406–408

    Google Scholar 

  • Simonetti JA (1989) Microhabitat use by Oryctolagus cuniculus in central Chile: A reassessment. Mammalia 53(3):363–368. https://doi.org/10.1515/mamm.1989.53.3.363

    Article  Google Scholar 

  • Simonetti JA, Fuentes ER (1982) Microhabitat use by European rabbits (Oryctolagus cuniculus) in central Chile: Are adult and juvenile patterns the same? Oecologia 54(1):55–57. https://doi.org/10.1007/BF00541107

    Article  Google Scholar 

  • Simonetti JA, Fuentes ER (1983) Shrub preferences of native and introduced Chilean matorral herbivores. Acta Oecologica: Oecologia Applicata 4(3):269–272

    Google Scholar 

  • Sinclair ARE (1996) Mammal populations: Fluctuation, regulation, life history theory, and their implications for conservation. In: Floyd RB, Sheppard AW, DeBarro PJ (eds) Frontiers of Population Ecology, Melbourne, Australia, pp 101–128

  • Sinclair ARE (2003) Mammal population regulation, keystone processes and ecosystem dynamics. Philosophical Transactions: Biological Sciences 358(1438):1729–1740

    Article  CAS  Google Scholar 

  • Sobey WR, Adams KM, Johnston GC, Gould LR, Simpson KNG, Keith K (1973) Macquarie Island: the introduction of the European rabbit flea Spilopsyllus cuniculi (Dale) as a possible vector for Myxomatosis. J Hyg Camb 71(2):299–309. https://doi.org/10.1017/S0022172400022762

    Article  CAS  Google Scholar 

  • Sobey WR, Conolly D, Menzies W (1977) Myxomatosis: breeding large numbers of rabbit fleas (Spilopsyllus cuniculi Dale). Epidemiol Infect 78(3):349–353. https://doi.org/10.1017/S0022172400056242

    Article  CAS  Google Scholar 

  • Sobey WR, Conolly D, Westwood N (1983) Myxomatosis: a search for a strain of virus to immunize a wild population of rabbits. Oryctolagus cuniculus Australian Wildlife Res 10(2):287–295. https://doi.org/10.1071/WR9830287

    Article  Google Scholar 

  • Soriguer RC (1979) Biología y dinámica de una población de conejos (Oryctolagus cuniculus L.) en Andalucía occidental. Dissertation, Universidad de Sevilla. Sevilla, Spain, pp 1–257

  • Soriguer RC (1980a) El conejo Oryctolagus cuniculus (L.), en Andalucía Occidental: parámetros corporales y curva de crecimiento. Doñana Acta Vertebrata 7:83–90

    Google Scholar 

  • Soriguer RC (1980b) Mixomatosis en una población de conejos en Andalucía Occidental. Evolución temporal, epidemia invernal y resistencia genética, Evolución temporal, epidemia invernal y resistencia genética. In: Reunión Iberoamericana de Zoología y Conservación de Vertebrados. La Rábida, Spain, pp 241–250

  • Soriguer RC (1981) Estructura de sexos y edades en una población de conejos (Oryctolagus cuniculus L.) de Andalucía Occidental. Doñana Acta Vertebrata 8:225–236

    Google Scholar 

  • Stodart E, Parer I (1988) Colonisation of Australia by the rabbit Oryctolagus cuniculus (L.). Project report CSIRO, Division of Wildlife and Ecology Canberra, Australia, pp 1–21. https://doi.org/10.4225/08/5a5cec3187bd7

  • Suárez LH, Gonzáles WL, Gianoli E (2004) Biología reproductiva de Convolvulus chilensis (Convolvulaceae) en una población de Aucó (Centro-Norte de Chile). Rev Chil Hist Nat 77:581–591

    Article  Google Scholar 

  • Strive T, Cox TE (2019) Lethal biological control of rabbits–The most powerful tools for landscape-scale mitigation of rabbit impacts in Australia. Australian Zoologist 40(1):118–128. https://doi.org/10.7882/AZ.2019.016

    Article  Google Scholar 

  • Strive T, Elsworth P, Liu J, Wright JD, Kovaliski J, Capucci L (2013) The non-pathogenic Australian rabbit Calicivirus RCV-A1 provides temporal and partial cross protection to lethal Rabbit Haemorrhagic Disease Virus infection which is not dependent on antibody titres. Vet Res 44(51):1–11. https://doi.org/10.1186/1297-9716-44-51

    Article  Google Scholar 

  • Stuessy TF, Swenson U, Marticorena C, Matthei O, Crawford DJ (1998) Loss of plant diversity and extinction on Robinson Crusoe Islands, Chile. In: Peng CI, Lowry II (eds) Rare, threatened and endangered floras of Asia and the Pacific Rim. Institute of Botany, Academia Sinica, Taipei, Taiwan, pp 243–257

  • Teifke JP, Reimann I, Schirrmeier H (2002) Subacute liver necrosis after experimental infection with Rabbit Haemorrhagic Disease Virus (RHDVV). J Comp Pathol 126(2–3):231–234. https://doi.org/10.1053/jcpa.2001.0534

    Article  CAS  Google Scholar 

  • Terauds A, Doube J, McKinaly J, Springer K (2014) Using long-term population trends of an invasive herbivore to quantify the impact of management actions in the sub-Antarctic. Polar Biol 37(6):833–843. https://doi.org/10.1007/s00300-014-1485-y

    Article  Google Scholar 

  • Thompson HV, King CM (2004) The European rabbit: The history and biology of a successful colonizer. Oxford Science Publications, Oxford University Press, Oxford, UK, pp 1–264

    Google Scholar 

  • Trout RC, Smith GC (1995) The reproductive productivity of the Wild rabbit (Oryctolagus cuniculus) in southern England on sites with different soils. J Zool 237(3):411–422. https://doi.org/10.1111/j.1469-7998.1995.tb02771.x

    Article  Google Scholar 

  • Trout RC, Tittensor AM (1989) Can predators regulate Wild rabbit Oryctolagus cuniculus population density in England and Wales? Mammal Rev 19(4):153–173. https://doi.org/10.1111/j.1365-2907.1989.tb00409.x

    Article  Google Scholar 

  • Tunon MJ, Sanchez-Campos S, Garcia-Ferreras J et al (2003) Rabbit Hemorrhagic Viral Disease: Characterization of a new animal model of fulminant liver failure. J Lab Clin Med 141(4):272–278. https://doi.org/10.1067/mlc.2003.30

    Article  Google Scholar 

  • Turchin P (2003) Complex population dynamics. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Van der Loo W, Ferrand N, Soriguer R (1991) Estimation of gene diversity at the b locus of the constant region of the immunoglobulin light chain in natural populations of European rabbit (Oryctolagus cuniculus) in Portugal, Andalusia and on the Azorean islands. Genetics 127:789–799

    Article  Google Scholar 

  • Van de Wouw P, Echeverría C, Rey-Benayas JM, Holmgren M (2011) Persistent Acacia savannas replace mediterranean sclerophyllous forests in South America. For Ecol Manage 262(6):1100–1108. https://doi.org/10.1016/j.foreco.2011.06.009

    Article  Google Scholar 

  • Vere DT, Jones RE, Saunders G (2004) The economic benefits of rabbit control in Australian temperate pastures by the introduction of Rabbit Haemorrhagic Disease. Agric Econ 30(2):143–155. https://doi.org/10.1111/j.1574-0862.2004.tb00183.x

    Article  Google Scholar 

  • Villafuerte R (1994) Riesgo de predación y estrategias defensivas del conejo, Oryctolagus cuniculus, en el Parque Nacional de Doñana. Dissertation, Universidad de Córdoba, Córdoba, Spain, pp 1–235

  • Villafuerte R, Delibes-Mateo M (2007) Conejo - Oryctolagus cuniculus (Linnaeus, 1758). In: Palomo J, Gisbert J, Blanco JC (eds) Atlas y Libro Rojo de los Mamíferos Terrestres de España. Dirección General para la Biodiversidad-SECEM-SECEMU. Madrid, Spain, pp 487–491

  • Voigt J (1987) La destrucción de equilibrio biológico. Editorial Alianza. Madrid, Spain, pp 1–168

    Google Scholar 

  • Waithman J (1979) Rabbit control in New South Wales - Past, Present and Future. Wool Technology and Sheep Breeding 27(3):25–30

    Google Scholar 

  • Wallage-Drees JM (1983) Effects of food on onset of breeding in rabbits, Oryctolagus cuniculus (L.), in a sand dune habitat. Acta Zoologica Fennica 174:57–59

    Google Scholar 

  • Wallage-Drees JM, Michielsen NC (1989) The influence of food supply on the population dynamics of rabbits, Oryctolagus cuniculus (L.), in a Dutch dune area. Zeitschrift für Säugetierkunde 54(5):304–323

  • Wells K, O’Hara RB, Cooke BD, Mutze GJ, Prowse TA, Fordham DA (2016) Environmental effects and individual body condition drive seasonal fecundity of rabbits: Identifying acute and lagged processes. Oecologia 181(3):853–864. https://doi.org/10.1007/s00442-016-3617-2

    Article  Google Scholar 

  • Wheeler SH, King DR (1985) The European rabbit in South-Western Australia II. Reprod Australian Wildlife Res 12(2):197–212. https://doi.org/10.1071/WR9850197

    Article  Google Scholar 

  • Williams CK, Moore RJ (1989) Environmental and genetic influences on growth of the wild rabbit, Oryctolagus cuniculus (L) in Australia. Aust J Zool 37(5):591–598. https://doi.org/10.1071/ZO9890591

    Article  Google Scholar 

  • Williams CK, Parer I, Coman B, Burley J, Braysher M (1995) Managing vertebrate damaging species: Rabbits. Bureau of Resource Sciences and CSIRO Division of Wildlife and Ecology. Canberra, Australia, pp 1–284

  • Williams RT, Parer I (1972) The status of Myxomatosis at Urana, New South Wales, from 1968 until 1971. Aust J Zool 20(4):391–404. https://doi.org/10.1071/ZO9720391

    Article  Google Scholar 

  • Wood DH (1980) The demography of a rabbit population in an arid region of New South Wales Australia. J Anim Ecol 49(1):55–79. https://doi.org/10.2307/4277

    Article  Google Scholar 

  • Xu FN, Shen WP, Xi QK (1985) Ultrastructural studies on Viral Haemorrhagic Disease in rabbits. Animal Husbandry & Veterinary Medicine 17:244–250

    Google Scholar 

  • Xu WY (1991) Viral Haemorrhagic Disease of rabbits in the People’s Republic of China: Epidemiology and virus characterisation. Revue Scientifique Et Technique (International Office of Epizootics) 10(2):393–405

    CAS  Google Scholar 

  • Xu WY, Du N, Liu S (1988) A new virus isolated from Hemorrhagic Disease in rabbits. In: Proceedings of 4th World Rabbit Congress, Budapest, Hungary, pp 456–461

  • Xu ZJ, Chen JX (1988) Studies on Viral Haemorrhagic Syndrome in rabbits. Acta Agriculturae Universitatis Zhejiangensis 14:136–141

    Google Scholar 

  • Yáñez J, Jaksic F (1978) Rol ecológico de los zorros (Dusicyon) en Chile central. Anales Del Museo De Historia Natural De Valparaíso (Chile) 11:105–112

    Google Scholar 

Download references

Funding

The authors are grateful to the Center of Applied Ecology and Sustainability (CAPES) for the opportunity to carry out this research and to ANID PIA/BASAL FB0002 for funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the study and contributed to writing different parts of the text. Correa-Cuadros, Flores-Benner, Strive, and Jaksic drafted the unified versions of the manuscript. The first author collected and analyzed the data; the last supported the first as a postdoc.

Corresponding author

Correspondence to Jennifer Paola Correa-Cuadros.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correa-Cuadros, J.P., Flores-Benner, G., Muñoz-Rodríguez, M.A. et al. History, control, epidemiology, ecology, and economy of the invasion of European rabbits in Chile: a comparison with Australia. Biol Invasions 25, 309–338 (2023). https://doi.org/10.1007/s10530-022-02915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-022-02915-2

Keywords

Navigation