Skip to main content

Advertisement

Log in

Shape matters: relevance of carapace for brachyuran crab invaders

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The increasing trend of biological invasions is one of the most concerning threats for ecosystems functioning. The identification of optimal characters determining the invasive potential of non-native species has always been a challenge in conservation studies. Morphological features can be used as a good proxy to address the invasive success in fish species, assuming that anatomical differences in comparison to native species can provide to newcomers ecological opportunities increasing their probability to become successful. Considering this, the present study constitutes the first applicative attempt of a model based on geometric morphometrics to demonstrate the importance of the carapace shape in the invasive ability in marine decapod crustaceans. The study was performed on the native brachyuran community of Alfacs Bay, in the Ebro Delta, the largest estuarine zone along the north-western Mediterranean, in which two recently established non-native crab species coexist: Dyspanopeus sayi and Callinectes sapidus. Results suggested that invaders with extreme carapace traits located peripherally in the community morphospace, such as C. sapidus, usually possess ecological advantages contributing to understand their success. Conversely, intermediate morphologies within the morphospace, such as D. sayi, imply ecological overlapping with native species reducing their community relevance. Besides, we also assessed the effect on the community morphospace of a hypothetical future invasive event from another crab species (Portunus segnis) with high probabilities to also colonize the community. Our outcomes confirm that the morphometric approach could be an alternative tool for assessing the potential ability of invasive crab species. However, further studies at different spatial and temporal scales, including additional traits and quantitative data from invasions, would be necessary to confirm the efficacy and usefulness of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Schubart et al. (2012)

Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the “revolution”. Ital J Zool 71:5–16

    Article  Google Scholar 

  • Adams DC, Collyer M, Kaliontzopoulou A (2020) Geometric morphometric analyses of 2D/3D landmark data. https://cran.r-project.org/web/packages/geomorph/geomorph.pdf

  • Alencar CERD, Lima-Filho PA, Molina WF, Freire FAM (2014) Sexual shape dimorphism of the mangrove crab Ucides cordatus (Linnaeus, 1763) (Decapoda, Ucididae) accessed through geometric morphometric. Sci World J 2014:206168. https://doi.org/10.1155/2014/206168

    Article  CAS  Google Scholar 

  • Allen CR, Holling CS (2010) Novelty, adaptive capacity, and resilience. Ecol Soc 15:24

    Article  Google Scholar 

  • Azzurro E, Tuset VM, Lombarte A, Maynou F, Simberloff D, Rodríguez-Pérez A, Solé RV (2014) External morphology explains the success of biological invasions. Ecol Lett 17:1455–1463. https://doi.org/10.1111/ele.12351

    Article  PubMed  Google Scholar 

  • Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: methodology and applications with R. Chapman and Hall, London

    Book  Google Scholar 

  • Bellwood O (2002) The occurrence, mechanics and significance of burying behaviour in crabs (Crustacea: Brachyura). J Nat Hist 36:1223–1238. https://doi.org/10.1080/00222930110048891

    Article  Google Scholar 

  • Berthon K (2015) How do native species respond to invaders? Mechanistic and trait-based perspectives. Biol Invasions 17:2199–2211. https://doi.org/10.1007/s10530-015-0874-7

    Article  Google Scholar 

  • Cabiddu S, Addis P, Palmas F, Pusceddu A (2020) First record of Dyspanopeus sayi (Smith, 1869) (decapoda: Brachyura: Panopeidae) in a Sardinian coastal lagoon (western mediterranean, Italy). Bioinvasions Rec 9:74–82. https://doi.org/10.3391/bir.2020.9.1.10

    Article  Google Scholar 

  • Camp J, Delgado M (1987) Hidrografía de las bahías del Delta del Ebro. Investig Pesq 51:351–359

    Google Scholar 

  • Castejón D, Guerao G (2013) A new record of the American blue crab, Callinectes sapidus Rathbun, 1896 (Decapoda: Brachyura: Portunidae), from the Mediterranean coast of the Iberian Peninsula. Bioinvasions Rec 2:141–143. https://doi.org/10.3391/bir.2013.2.2.08

    Article  Google Scholar 

  • Catford J, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40. https://doi.org/10.1111/j.1472-4642.2008.00521.x

    Article  Google Scholar 

  • Cornwell W, Schwilk D, Ackerly D (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471

    Article  Google Scholar 

  • Crocetta F, Agius D, Balistreri P, Bariche M, Bayhan Y, Çakir M, Ciriaco S, Corsini-Foka M, Deidun A, El Zrelli R, Ergüden D, Evans J, Ghelia M, Giavasi M, Kleitou P, Kondylatos G, Lipej L, Mifsud C, Özvarol Y, Pagano A, Portelli P, Poursanidis D, Rabaoui L, Schembri P, Taskin E, Tiralongo F, Zenetos A (2015) New Mediterranean biodiversity records (October 2015). Mediterr Mar Sci 16:682–702

    Article  Google Scholar 

  • Cury PM, Shin YJ, Planque B, Durant JM, Fromentin JM, Kramer-Schadt S, Stenseth NC, Travers M, Grimm V (2008) Ecosystem oceanography for global change in fisheries. Trends Ecol Evol 23:338–346. https://doi.org/10.1016/j.tree.2008.02.005

    Article  PubMed  Google Scholar 

  • Daly BJ, Eckert GL, Long WC (2020) Moulding the ideal crab: implications of phenotypic plasticity for crustacean stock enhancement. ICES J Mar Sci. https://doi.org/10.1093/icesjms/fsaa043

    Article  Google Scholar 

  • Darnell MZ, Rittschof D, Darnell KM, McDowell RE (2009) Lifetime reproductive potential of female blue crabs Callinectes sapidus in North Carolina, USA. Mar Ecol Prog Ser 394:153–163. https://doi.org/10.3354/meps08295

    Article  Google Scholar 

  • Davie PJF, Guinot D, Ng PKL (2015) Anatomy and functional morphology of Brachyura. In: Castro P, Davie PJF, Guinot D, Schram FR, von V Klein, JC (eds) Treatise on zoology—anatomy, taxonomy, biology. The Crustacea, vol 9C. Decapoda: Brachyura (part 1), pp 11–163. https://doi.org/10.1163/9789004190832_004

  • Davis JLD, Young-Williams AC, Aguilar R, Carswell BL, Goodison MR, Hines AH, Kramer MA, Zohar Y, Zmora O (2004) Differences between hatchery-raised and wild blue crabs: implications for stock enhancement potential. Trans Am Fish Soc 133:1–14. https://doi.org/10.1577/t03-004

    Article  Google Scholar 

  • DeFur PL, Pease A, Siebelink A, Elfers S (1988) Respiratory responses of blue crabs, Callinectes sapidus, to emersion. Comp Biochem Physiol Part A Physiol 89:97–101

    Article  Google Scholar 

  • DeRivera CE, Ruiz GM, Hines AH, Jivoff P (2005) Biotic resistance to invasion: native predator limits abundance and distribution of an introduced crab. Ecology 86:3364–3376

    Article  Google Scholar 

  • Du F, Xu X, Zhang XC, Sui Y, Shao M, Hu L, Shan L (2012) The relationships between aboveground biomass and Voronoi area of coexisting species in an old-field community. Pol J Ecol 60:479–489

    Google Scholar 

  • Farré M, Tuset VM, Cartes JE, Massutí E, Lombarte A (2016) Depth-related trends in morphological and functional diversity of demersal fish assemblages in the western Mediterranean Sea. Prog Oceanogr 147:22–37. https://doi.org/10.1016/j.pocean.2016.07.006

    Article  Google Scholar 

  • Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Divers Distrib 13:476–485. https://doi.org/10.1111/j.1472-4642.2007.00377.x

    Article  Google Scholar 

  • Froglia C, Speranza S (1993) First record of Dyspanopeus sayi (Smith, 1869) in the Mediterranean Sea (Crustacea: Decapoda: Xanthidae). Quad Ist Ric Pesca Marittima 5:163–166

    Google Scholar 

  • Fusté X (1988) Crustaceos decapodos de la Bahia de els Alfacs (Delta del Ebro). Inv Pesq 52:617–623

    Google Scholar 

  • Förster R (1985) Evolutionary trends and ecology of Mesozoic decapod crustaceans. Trans R Soc Edinb 76:299–304. https://doi.org/10.1017/S0263593300010518

    Article  Google Scholar 

  • Galil B (2007) Loss or gain? Invasive aliens and biodiversity in the Mediterranean Sea. Mar Pollut Bull 55(7–9):314–322. https://doi.org/10.1016/j.marpolbul.2006.11.008

    Article  CAS  PubMed  Google Scholar 

  • Galil B (2011) The alien crustaceans in the Mediterranean Sea: an historical review. In: Galil B, Clark P, Carlton J (eds) In the wrong place—alien marine crustaceans: distribution, biology and impacts. Invading nature—Springer series in invasion ecology. Springer, Berlin, pp 377–402

    Google Scholar 

  • Galil B, Froglia C, Noël P (2002) CIESM atlas of exotic species in the Mediterranean, Volumen 2. Crustaceans: decapods and stomatopods. CIESM Publishers, Monaco

    Google Scholar 

  • Gehrels H, Knysh KM, Boudreau M, Thériault MH, Courtenay SC, Cox R, Quijón PA (2016) Hide and seek: habitat-mediated interactions between European green crabs and native mud crabs in Atlantic Canada. Mar Biol 163:152. https://doi.org/10.1007/s00227-016-2927-6

    Article  CAS  Google Scholar 

  • González JA, Triay-Portella R, Escribano A, Cuesta JA (2017) Northernmost record of the pantropical portunid crab Cronius ruber in the eastern Atlantic (Canary Islands): natural range extension or human-mediated introduction? Sci Mar 81:81–89. https://doi.org/10.3989/scimar.04551.17b

    Article  Google Scholar 

  • Grosholz E (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17:22–27. https://doi.org/10.1016/S0169-5347(01)02358-8

    Article  Google Scholar 

  • Guillén J, Palanques A (1997) A historical perspective of the morphological evolution in the lower Ebro river. Environ Geol 30:174–180. https://doi.org/10.1007/s002540050144

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952. https://doi.org/10.1126/science.1149345

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4:9

    Google Scholar 

  • Hampton KR, Hopkins MJ, Mcnamara JC, Thurman CL (2014) Intraspecific variation in carapace morphology among fiddler crabs (Genus Uca) from the Atlantic coast of Brazil. Aquat Biol 20:53–67. https://doi.org/10.3354/ab00545

    Article  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomaner L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. https://doi.org/10.1111/j.1461-0248.2005.00871.x

    Article  PubMed  Google Scholar 

  • Harris LG, Tyrrell MC (2001) Changing community states in the Gulf of Maine: synergism between invaders, overfishing and climate change. Biol Invasions 3:9–21. https://doi.org/10.1023/A:1011487219735

    Article  Google Scholar 

  • Hartnoll RG (1971) The occurrence, methods and significance of swimming in the Brachyura. Anim Behav 19:34–50. https://doi.org/10.1016/S0003-3472(71)80132-X

    Article  Google Scholar 

  • Hidalgo M, Rouyer T, Molinero JC, Massutí E, Moranta J, Guijarro B, Stenseth NC (2011) Synergistic effects of fishing-induced demographic changes and climate variation on fish population dynamics. Mar Ecol Prog Ser 426:1–12. https://doi.org/10.3354/meps09077

    Article  Google Scholar 

  • Hill J, Fowler DL, Van den Avyle MJ (1989) Species profiles. Life histories and environmental requirements of coastal fishes and invertebrates (Mid-Atlantic). Blue Crab. U.S. Army Corps of Engineers, Vicksburg

  • Hines AH (1982) Coexistence in a Kelp forest: size, population dynamics, and resource partitioning in a guild of spider crabs (Brachyura, Majidae). Ecol Monogr 52:179–198. https://doi.org/10.2307/1942610

    Article  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528. https://doi.org/10.1080/00330124.2015.1124788

    Article  CAS  PubMed  Google Scholar 

  • Hopkins MJ, Thurman CL (2010) The geographic structure of morphological variation in eight species of fiddler crabs (Ocypodidae: Genus Uca) from the eastern United States and Mexico. Biol J Linn Soc 100:248–270. https://doi.org/10.1111/j.1095-8312.2010.01402.x

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–934. https://doi.org/10.1126/science.1085046

    Article  CAS  PubMed  Google Scholar 

  • Idaszkin YL, Márquez F, Nocera AC (2013) Habitat-specific shape variation in the carapace of the crab Cyrtograpsus angulatus. J Zool 290:117–126. https://doi.org/10.1111/jzo.12019

    Article  Google Scholar 

  • Jivoff P, Hines AH, Quackenbush LS (2007) Reproduction biology and embryonic development. In: Kennedy VS, Cronin LE (eds) The blue crab: Callinectes sapidus. Maryland Sea Grant College, College Park, pp 255–298

    Google Scholar 

  • Karatayev AY, Burlakova LE, Padilla DK, Mastitsky SE, Olenin S (2009) Invaders are not a random selection of species. Biol Invasions 11:2009–2019. https://doi.org/10.1007/s10530-009-9498-0

    Article  Google Scholar 

  • Katsanevakis S, Wallentinus I, Leppäkoski E, Çinar ME, Oztürk B, Grabowski M, Golani D, Cardoso AC (2014) Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquat Invasions 9:391–423. https://doi.org/10.3391/ai.2014.9.4.01

    Article  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  Google Scholar 

  • Lai JCY, Ng PKL, Davie PJF (2010) A revision of the Portunus pelagicus (Linnaeus, 1758) species complex (Crustacea: Brachyura: Portunidae), with the recognition of four species. Raffles Bull Zool 58:199–237

    Google Scholar 

  • Lee SY (1995) Cheliped size and structure: the evolution of a multi-functional decapod organ. J Exp Mar Biol Ecol 193:161–176. https://doi.org/10.1016/0022-0981(95)00116-6

    Article  Google Scholar 

  • Lejeusne C, Latchere O, Petit N, Rico C, Green AJ (2014) Do invaders always perform better? Comparing the response of native and invasive shrimps to temperature and salinity gradients in south-west Spain. Estuar Coast Shelf Sci 136:102–111. https://doi.org/10.1016/j.ecss.2013.11.014

    Article  Google Scholar 

  • López V, Rodon J (2018) Diagnosi i situació actual del Cranc Blau (Callinectes sapidus) al delta de l’ Ebre. Informe Tècnic Servei de Recursos Marins. Direcció General de Pesca i Afers Marítims, Generalitat de Catalunya, p 86

  • MacDonald JA, Roudez R, Glover T, Weis JS (2007) The invasive green crab and Japanese shore crab: behavioral interactions with a native crab species, the blue crab. Biol Invasions 9:837–848. https://doi.org/10.1007/s10530-006-9085-6

    Article  Google Scholar 

  • Mancinelli G, Carrozzo L, Costantini ML, Rossi L, Marini G, Pinna M (2013) Occurrence of the Atlantic blue crab Callinectes sapidus Rathbun, 1896 in two Mediterranean coastal habitats: temporary visitor or permanent resident? Estuar Coast Shelf Sci 135:46–56. https://doi.org/10.1016/j.ecss.2013.06.008

    Article  CAS  Google Scholar 

  • Mariappan P, Balasundaram C, Schmitz B (2000) Decapod crustacean chelipeds: an overview. J Biosci 25:301–313. https://doi.org/10.1007/BF02703939

    Article  CAS  PubMed  Google Scholar 

  • Micu D, Niţă V, Todorova V (2010) First record of Say’s mud crab Dyspanopeus sayi (Brachyura: Xanthoidea: Panopeidae) from the Black Sea. Mar Biodivers Rec 3:1–6. https://doi.org/10.1017/S1755267210000308

    Article  Google Scholar 

  • Millikin MR, Williams AB (1984) Synopsis of biological data on blue crab, Callinectes sapidus Rathbun. FAO Fish Synopsis

  • Mistri M (2004) Predatory behavior and preference of a successful invader, the mud crab Dyspanopeus sayi (Panopeidae), on its bivalve prey. J Exp Mar Biol Ecol 312:385–398. https://doi.org/10.1016/j.jembe.2004.07.012

    Article  Google Scholar 

  • Mizzan L (1995) Notes on presence and diffusion of Dyspanopeus sayi (Smith, 1869) (Crustacea, Decapoda, Xanthidae) in the Venetian Lagoon. Boll Mus Civ St Nat Venezia 44:121–129

    Google Scholar 

  • Nehring S (2011) Invasion history and success of the American Blue Crab Callinectes sapidus in European and adjacent waters. In: Galil B, Clark P, Carlton J (eds) In the wrong place—alien marine crustaceans: distribution, biology and impacts. Invading nature—Springer series in invasion ecology. Springer, Berlin, pp 607–624

    Google Scholar 

  • Ng PKL (1998) Crabs. In: Carpenter KE, Niem VH (eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 2: Cephalopods, crustaceans, holothurians and sharks, pp 1045–1055

  • Nizinski MS (2003) Annotated checklist of decapod crustaceans of Atlantic coastal and continental shelf waters of the United States. Proc Biol Soc Wash 116:96–157

    Google Scholar 

  • Olesen J (2013) The crustacean carapace: morphology, function, development, and phylogenetic history. In: Watling L, Thiel M (eds) Functional morphology and diversity of crustaceans. The natural history of the Crustacea. Oxford University Press, Oxford, pp 103–139

    Chapter  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. https://doi.org/10.1038/nature01286

    Article  CAS  PubMed  Google Scholar 

  • Parravicini V, Azzurro E, Kulbicki M, Belmaker J (2015) Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders. Ecol Lett 18:246–253. https://doi.org/10.1111/ele.12401

    Article  PubMed  Google Scholar 

  • Pazooki J, Hosseini M, Zadeh AV (2012) The dietary compositions of the blue swimming crab, Portunus segnis (Forskal, 1775) from Persian Gulf, South Iran. World Appl Sci J 20:416–422. https://doi.org/10.5829/idosi.wasj.2012.20.03.1969

    Article  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. https://doi.org/10.1126/science.1111322

    Article  CAS  PubMed  Google Scholar 

  • Philippart CJM, Anadón R, Danovaro R, Dippner JW, Drinkwater KF, Hawkins SJ, Oguz T, O’Sullivan G, Reid PC (2011) Impacts of climate change on European marine ecosystems: observations, expectations and indicators. J Exp Mar Biol Ecol 400:52–69. https://doi.org/10.1016/j.jembe.2011.02.023

    Article  Google Scholar 

  • Prager MH, McConaugha JR, Jones CM, Geer PJ (1990) Fecundity of blue crab, Callinectes sapidus, in Chesapeake Bay: biological, statistical and management considerations. Bull Mar Sci 46:170–179

    Google Scholar 

  • Pyle R, Cronin E (1950) The general anatomy of the blue crab Callinectes sapidus Rathbun, vol 87. Chesapeake Biological Laboratory Publications, Solomons, p 40

  • Pörtner HO, Farrell P (2008) Physiology and climate change. Science 322:690–692. https://doi.org/10.1007/s10502-012-9180-7

    Article  PubMed  Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rabaoui L, Arculeo M, Mansour L, Tlig-Zouari S (2015) Occurrence of the lessepsian species Portunus segnis (Crustacea: Decapoda) in the Gulf of Gabes (Tunisia): first record and new information on its biology and ecology. Cah Biol Mar 56:169–175

    Google Scholar 

  • Reuschel S, Schubart CD (2007) Contrasting genetic diversity with phenotypic diversity in coloration and size in Xantho poressa (Brachyura: Xanthidae), with new results on its ecology. Mar Ecol 28:296–305. https://doi.org/10.1111/j.1439-0485.2006.00139.x

    Article  CAS  Google Scholar 

  • Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL (2013) Progress toward understanding the ecological impacts of nonnative species. Ecol Monogr 83:263–282. https://doi.org/10.1890/13-0183.1

    Article  Google Scholar 

  • Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces. J Classif 16:197–223

    Article  Google Scholar 

  • Rohlf FJ (2017a) TPS Dig Version 2.30 and TPS Relative Warps Software. State University of New York at Stony Brook

  • Rohlf FJ (2017b) TPS Relw Version 1.69 and TPS RelativeWarps Software. State University of New York at Stony Brook

  • Rohlf FJ (2017c) TpsSmall Version 1.34 and TPS Relative Warps Software. State University of New York at Stony Brook

  • Rohlf FJ, Slice D (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Biol 39:40–59

    Google Scholar 

  • Rojas-Vélez S, Tavera J, Acero A (2019) Unraveling lionfish invasion: is Pterois volitans truly a morphologically novel predator in the Caribbean? Biol Invasions 21:1921–1931. https://doi.org/10.1007/s10530-019-01946-6

    Article  Google Scholar 

  • Rufino MM, Abelló P, Jones DA (2004) Male and female carapace shape differences in Liocarcinus depurator (Decapoda, Brachyura): an application of geometric morphometric analysis to crustaceans. Ital J Zool 71:79–83

    Article  Google Scholar 

  • Rufino MM, Abelló P, Yule AB (2006) Geographic and gender shape differences in the carapace of Liocarcinus depurator (Brachyura: Portunidae) using geometric morphometrics and the influence of a digitizing method. J Zool 269:458–465. https://doi.org/10.1111/j.1469-7998.2006.00086.x

    Article  Google Scholar 

  • Safaie M, Pazooki J, Kiabi B, Shokri MR (2013) Reproductive biology of blue swimming crab, Portunus segnis (Forskal, 1775) in coastal waters of Persian Gulf and Oman Sea, Iran. Iran J Fish Sci 12:430–444

    Google Scholar 

  • Scholtz G (2014) Evolution of crabs—history and deconstruction of a prime example of convergence. Contrib to Zool 83:87–105

    Article  Google Scholar 

  • Schubart CD, Guerao G, Abelló P (2012) First record and evidence of an established population of the North American mud crab Dyspanopeus sayi (Brachyura: Heterotremata: Panopeidae) in the western Mediterranean. Sci Mar 76:79–85. https://doi.org/10.3989/scimar.03361.16A

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. https://doi.org/10.1016/s0169-5347(02)02495-3

    Article  Google Scholar 

  • Silva IC, Hawkins SJ, Paula J (2009) A comparison of population differentiation in two shore crab species with contrasting distribution along the Portuguese coast, using two morphological methodologies. Mar Freshw Res 60:833–844

    Article  Google Scholar 

  • Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66. https://doi.org/10.1016/j.tree.2012.07.013

    Article  PubMed  Google Scholar 

  • Smith SM, Fox RJ, Donelson JM, Head ML, Booth DJ (2016) Predicting range-shift success potential for tropical marine fishes using external morphology. Biol Lett 12:20160505. https://doi.org/10.1098/rsbl.2016.0505

    Article  PubMed  PubMed Central  Google Scholar 

  • Sneddon LU, Huntingford FA, Taylor AC (1997) Weapon size versus body size as a predictor of winning in fights between shore crabs, Carcinus maenas (L.). Behav Ecol Sociobiol 41:237–242

    Article  Google Scholar 

  • Solé J, Turiel A, Estrada M, Llebot C, Blasco D, Camp J, Delgado M, Fernández-Tejedor M, Diogène J (2009) Climatic forcing on hydrography of a Mediterranean bay (Alfacs Bay). Cont Shelf Res 29:1786–1800. https://doi.org/10.1016/j.csr.2009.04.012

    Article  Google Scholar 

  • Spivak ED, Arévalo E, Cuesta JA, González-Gordillo JI (2010) Population structure and reproductive biology of the stone crab Xantho poressa (Crustacea: Decapoda: Xanthidae) in the ‘Corrales de Rota’ (south-western Spain), a human-modified intertidal fishing area. J Mar Biol Assoc UK 90:323–334. https://doi.org/10.1017/S0025315409990592

    Article  Google Scholar 

  • Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci 99:15497–15500. https://doi.org/10.1073/pnas.242437499

    Article  CAS  PubMed  Google Scholar 

  • Števčić Z (1971) The main features of brachyuran evolution. Syst Zool 20:331–340. https://doi.org/10.2307/2412345

    Article  Google Scholar 

  • Streftaris N, Zenetos A (2006) Alien marine species in the Mediterranean—the 100 “worst invasives” and their impact. Mediterr Mar Sci 7:87–118. https://doi.org/10.12681/mms.180

    Article  Google Scholar 

  • Taylor AC, Atkinson RJA (1991) Respiratory adaptations of aquatic decapod crustaceans and fish to a burrowing mode of life. In: Woakes AJ, Grieshaber MK, Bridges CR (eds) Physiological strategies for gas exchange and metabolism: society of experimental biology. Cambridge University Press, Cambridge, pp 211–234

    Google Scholar 

  • Thessalou-Legaki M, Aydogan O, Bekas P, Bilge G, Boyaci YO, Brunelli E, Circosta V, Crocetta F, Durucan F, Erdem M, Ergolavou A, Filiz H, Fois F, Gouva E, Kapiris K, Katsanevakis S, Kljajić Z, Konstantinidis E, Konstantinou G, Koutsogiannopoulos D, Lamon S, Mačić V, Mazzette R, Meloni D, Mureddu A, Paschos I, Perdikaris C, Piras F, Poursanidis D, Ramos-Esplá AA, Rosso A, Sordino P, Sperone E, Sterioti A, Taşkin E, Toscano F, Tripepi S, Tsiakkiros L, Zenetos A (2012) New mediterranean biodiversity records (December 2012). Mediterr Mar Sci 13:312–327

    Article  Google Scholar 

  • Tuset VM, Lombarte A, Bariche M, Maynou F, Azzurro E (2020) Otolith morphological divergences of successful Lessepsian fishes on the Mediterranean coastal waters. Estuar Coast Shelf Sci 236:106631. https://doi.org/10.1016/j.ecss.2020.106631

    Article  Google Scholar 

  • Ulman A, Ferrario J, Occhipinti-Ambrogi A, Arvanitidis C, Bandi A, Bertolino M, Bogi C, Chatzigeorgiou G, Çiçek BA, Deidun A, Ramos-Esplá A, Koçak C, Lorenti M, Martinez-Laiz G, Merlo G, Princisgh E, Scribano G, Marchini A (2017) A massive update of non-indigenous species records in Mediterranean marinas. PeerJ 5:e3954. https://doi.org/10.7717/peerj.3954

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Engel W (1958) The blue crab and its fishery in Chesapeake bay. Part 1. Reproduction, early development, growth and migration. Commer Fish Rev 20:6–17

    Google Scholar 

  • Veas R, Hernández-Miranda E, Quiñones RA (2014) Body shape and burial behavior of the sand crab Emerita analoga (Stimpson 1857) in a reflective to intermediate morphodynamic range of sandy beaches. Mar Biol 161:2345–2357. https://doi.org/10.1007/s00227-014-2510-y

    Article  Google Scholar 

  • Vermeij GJ (1977) Patterns in crab claw size: the geography of crushing. Syst Zool 26:138–151

    Article  Google Scholar 

  • Walther GR, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarošík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilà M, Vohland K, Settele J (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693. https://doi.org/10.1016/j.tree.2009.06.008

    Article  PubMed  Google Scholar 

  • Weis JS (2010) The role of behavior in the success of invasive crustaceans. Mar Freshw Behav Physiol 43:83–98. https://doi.org/10.1080/10236244.2010.480838

    Article  Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, De Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change 3:78–82. https://doi.org/10.1038/nclimate1627

    Article  Google Scholar 

  • Williams AB (1984) Shrimps, lobsters, and crabs of the Atlantic coast of the eastern United States, Maine to Florida. Smithsonian Institution Press, Washington

    Google Scholar 

  • Young AC, Johnson EG, Davis JLD, Hines AH, Zmora O, Zohar Y (2008) Do hatchery-reared blue crabs differ from wild crabs, and does it matter? Rev Fish Sci 16:254–261. https://doi.org/10.1080/10641260701684122

    Article  Google Scholar 

  • Zelditch ML, Swiderski D, Sheets H (2012) Geometric morphometrics for biologists: a primer. Elsevier, Amsterdam

    Google Scholar 

  • Zobel M (1997) The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol 12:266–269. https://doi.org/10.1016/S0169-5347(97)01096-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors want to acknowledge the staff of the Biological Reference Collections (CBR) of the Institut de Ciències del Mar (ICM-CSIC) of Barcelona (Francisco J. Olivas and Ricardo Santos) for their help in the identification, separation and transferring of the samples used in the present study.

Funding

The present study is included and financed within the framework of the project CLIFISH (CTM2015-66400-C3-3-R, MINECO/FEDER), funded by the Spanish Ministry of Economy and Competitiveness and by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. MF and PA selected and prepared samples for the study; MF and AL performed the morphological analyses; VMT performed some of the statistical analyses; all authors interpreted data. MF and VMT wrote the first draft of the manuscript. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Marc Farré.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All the research was performed following the general guidelines for the ethical use of animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farré, M., Lombarte, A., Tuset, V.M. et al. Shape matters: relevance of carapace for brachyuran crab invaders. Biol Invasions 23, 461–475 (2021). https://doi.org/10.1007/s10530-020-02378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-020-02378-3

Keywords

Navigation