Skip to main content

Advertisement

Log in

Vegetation recovery after 11 years of wild boar exclusion in the Monte Desert, Argentina

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The wild boar (Sus scrofa) is considered an ecosystem engineer. It roots up the ground looking for forage, generating patches of different sizes and without vegetation. Studies of wild boar’s impact on vegetation can be addressed in two contrasting ways: short-term effects (immediately after boar’s disturbance) and long-term effects. Short-term studies in the Monte Desert of Argentina showed that wild boar rooting modifies soil properties, reduces plant cover, and decreases plant richness and diversity. The objective of this study was to analyse the vegetation response in a desert ecosystem after 11 yr of wild boar disturbance establishing a replicated experiment of medium and large-sized animal’s exclusion. In this long-span study, time was the most important variable to predict the cover of different plant life forms and richness in disturbed soils. Herb cover was higher in disturbed soils, with grasses and woody species showing the opposite. Over the long-term, wild boar positively affect alpha diversity and richness, while the species turnover (rate of species replacement) was only influenced by the replacement of herbs. Disturbed soils were mainly dominated by annual species with a relatively high (60%) extent of species turnover. These vegetation changes throughout time are influenced by the occurrence of unexpectedly high rainy episodes, and probably by the system’s own fragility of Monte Desert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(extracted and modified from Cuevas et al. 2012)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham EM, Del Valle HF, Roig F, Torres L, Ares JO, Coronato F, Godagnone R (2009) Overview of the geography of the Monte Desert biome (Argentina). J Arid Environ 73:144–153

    Google Scholar 

  • Abril A (2002) La microbiología del suelo: su relación con la agricultura sustentable. In: Sarandón SJ (ed) Agroecología. El Camino hacia una Agricultura Sustentable. Ediciones Científicas Americanas, La Plata, pp 129–150

    Google Scholar 

  • Anderson SJ, Stone CP (1993) Snaring to control feral pigs Sus scrofa in a remote Hawaiian rain forest. Biol Conserv 63:195–201

    Google Scholar 

  • Arrington DA, Toth LA, Koebel JW Jr (1999) Effects of rooting by Feral hogs Sus scrofa L. on the structure of a floodplain vegetation assemblage. Wetlands 9:535–544

    Google Scholar 

  • Ballari SA, Barrios-García MN (2014) A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mamm Rev 44:124–134

    Google Scholar 

  • Ballari SA, Cuevas MF, Ojeda RA, Navarro JL (2015a) Diet of wild boar (Sus scrofa) in a protected area of Argentina: the importance of baiting. Mamm Res 60:81–87

    Google Scholar 

  • Ballari SA, Cuevas MF, Cirignoli S, Valenzuela AEJ (2015b) Invasive wild boar in Argentina: using protected areas as a research platform to determine distribution, impacts and management. Biol Invasions 17(6):1595–1602

    Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 1:1–48

    Google Scholar 

  • Beltran RS, Kreidler N, Van Vuren DH, Morrison SA, Zavaleta ES, Newton K, Tershi BR, Croll DA (2014) Passive recovery of vegetation after herbivore eradication on Santa Cruz Island, California. Restor Ecol 22(6):790–797

    Google Scholar 

  • Bertiller MB, Marone L, Baldi R, Ares JO (2009) Biological interactions at different spatial scales in the Monte desert of Argentina. J Arid Environ 73(2):212–221

    Google Scholar 

  • Boulanger JP, Martinez F, Segura EC (2007) Projection of future climate change conditions using simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America. Clim Dyn 28:255–271

    Google Scholar 

  • Bueno CG, Azorín J, Gómez-García D, Alados CL, Badía D (2013) Occurrence and intensity of wild boar disturbances, effects on the physical and chemical soil properties of alpine grasslands. Plant Soil 373(1–2):243–256

    CAS  Google Scholar 

  • Bratton SP (1974) The effect of the European Wild boar (Sus scrofa) on the high-elevation vernal flora in Great Smoky Mountains National Park. Bull Torrey Bot Club 101(4):198–206

    Google Scholar 

  • Bratton SP (1975) The effect of the European wild boar, Sus scrofa, on Gray Beech Forest in the Great Smoky Mountains. Ecology 56:1356–1366

    Google Scholar 

  • Cole RJ, Litton CM (2014) Vegetation response to removal of non-native feral pigs from Hawaiian tropical montane wet forest. Biol Invasions 16(1):125–140

    Google Scholar 

  • Cole RJ, Litton CM, Koontz MJ, Loh RK (2012) Vegetation recovery 16 years after feral pig removal from a wet Hawaiian Forest. Biotropica 44(4):463–471

    Google Scholar 

  • Collins SL, Barber SC (1985) Effects of disturbance on diversity in mixed-grass prairie. Vegetatio 64:87–94

    Google Scholar 

  • Cuevas MF, Novillo A, Campos C, Dacar MA, Ojeda RA (2010) Food habits and impact of rooting behavior of the invasive Wild boar, Sus scrofa, in a protected area of the Monte Desert, Argentina. J Arid Environ 74:1582–1585

    Google Scholar 

  • Cuevas MF, Mastrantonio L, Ojeda RA, Jaksic FM (2012) Effects of wild boar disturbance on vegetation and soil properties in the Monte Desert, Argentina. Mamm Biol 77:299–306. https://doi.org/10.1016/j.mambio.2012.02.003

    Google Scholar 

  • Cuevas MF, Ojeda RA, Dacar MA, Jaksic FM (2013) Seasonal variation in feeding habits and diet selection by wild boars in a semi-arid environment of Argentina. Acta Theriol 58(1):63–72

    Google Scholar 

  • Cuevas MF, Ojeda RA, Jaksic FM (2016) Ecological strategies and impact of wild boar in phytogeographic provinces of Argentina with emphasis on aridlands. Mastozool Neotrop 23(2):239–254

    Google Scholar 

  • Cushman HJ, Tierney TA, Hinds JM (2004) Variable effects of feral pigs disturbances on native and exotic plants in a California grassland. Ecol Appl 14(6):1746–1756

    Google Scholar 

  • Daciuk J (1978) Estado actual de las especies de mamíferos introducidos en la Subregión Araucana (Rep. Argentina) y grado de coacción ejercido en algunos ecosistemas surcordilleranos. Anales de Parques Nacionales- Servicio Nacional de Parques Nacionales 14:105–127

    Google Scholar 

  • Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J, Carl G et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Google Scholar 

  • Egler FE (1954) Vegetation science concepts I. Initial floristic composition, a factor in old-field vegetation development. Vegetatio 4(6):412–417

    Google Scholar 

  • Giménez-Anaya A, Herrero J, Rosell C, Couto S, García-Serrano A (2008) Food habits of wild boars (Sus scrofa) in a Mediterranean coastal wetland. Wetlands 28(1):197–203

    Google Scholar 

  • Gomez JM, Hodar JA (2008) Wild boars (Sus scrofa) affect the recruitment rate and spatial distribution of holm oak (Quercus ilex). For Ecol Manag 256:1384–1389

    Google Scholar 

  • Hobbs NT (1996) Modification of ecosystems by ungulates. J Wildl Manag 60(4):695–713

    Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337

    Google Scholar 

  • Hone J (1988) Feral pig rooting in a mountain forest and woodland: distribution, abundance and relationships with environmental. Aust J Ecol 13:393–400

    Google Scholar 

  • Hone J (2002) Feral pigs in Namadgi National Park, Australia: dynamics, impacts and management. Biol Conserv 105(2):231–242

    Google Scholar 

  • Jones HP, Schmitz OJ (2009) Rapid recovery of damaged ecosystems. PloS one 4(5):e5653

    PubMed  PubMed Central  Google Scholar 

  • Katahira LK, Finnegan P, Stone CP (1993) Eradicating feral pigs in montane mesic habitat at Hawaii Volcanoes National Park. Wildl Soc Bull 21:269–274

    Google Scholar 

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence–absence data. J Anim Ecol 72(3):367–382

    Google Scholar 

  • Kotanen P (1995) Responses of vegetation to a changing regime of disturbance: effects of feral pigs in a Californian coastal prairie. Ecography 18:190–199

    Google Scholar 

  • Labraga JC, Villalba R (2009) Climate in the Monte Desert: past trends, present conditions and future projections. J Arid Environ 73:154–163

    Google Scholar 

  • Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on responses to disturbance. Trends Ecol Evol 12:474–478

    CAS  PubMed  Google Scholar 

  • Loh RK, Tunison JT (1999) Vegetation recovery following pig removal in’Ola’a-Koa Rainforest Unit, Hawaii Volcanoes National Park. Pacific Cooperative Studies Unit 123, University of Hawaii

  • Long JL (2003) Introduced mammals of the world: Their history, distribution and influence. CSIRO Publishing, Clayton

    Google Scholar 

  • Maestre FT, Cortina J (2004) Do positive interactions increase with abiotic stress? A test from a semi-arid steppe. Proc R Soc Lond (Biol) 271(5):331–333

    Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princenton University Press, Princenton

    Google Scholar 

  • Mapston ME (2004) Feral hogs in Texas. Texas Cooperative Extension Service B-6149, Texas A&M University Libraries, College Station, TX, USA

  • Matteucci SD (2018) Ecorregión Monte de llanuras y mesetas. In: Morello JH, Matteucci SD, Rodríguez AF, Silva M (eds) Eocrregiones y complejos ecosistémicos argentinos. Universidad de Buenos Aires, Buenos Aires, pp 353–790

    Google Scholar 

  • Meffe GK, Carroll CR, Pimm SL (1997) Community- and ecosystem-level conservation: species interactions, disturbance regimes, and invading species. In: Meffe GK, Carroll CR (eds) Principles of conservation biology. Sinauer Associates, Sunderland, pp 236–267

    Google Scholar 

  • Miller J, Franklin J, Aspinall R (2007) Incorporating spatial dependence in predictive vegetation models. Ecol Modell 202(3–4):225–242

    Google Scholar 

  • Mohr D, Cohnstaedt LW, Topp W (2005) Wild boar and red deer affect soil nutrients and soil biota in steep oak stands of the Eifel. Soil Biol Biochem 37:693–700

    CAS  Google Scholar 

  • Noble IR, Slatyer RO (1980) The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43(1–2):5–21

    Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Google Scholar 

  • Ojeda RA (1989) Small mammal responses to the fire in the Monte Desert, Argentina. J Mamm 70:416–420

    Google Scholar 

  • Ojeda RA, Mares MA (1982) Conservation of South American Mammals: Argentina as a Paradigm. In: Mares MA, Genoways HM (eds) Mammalian biology in South America. Pymatuning symposia in ecology, vol 6. Special Publication Series. University of Pittsburgh, Pittsburgh, pp 505–521

    Google Scholar 

  • Ojeda RA, Campos CM, Gonnet JM, Borghi CE, Roig V (1998) The MaB Reserve of Ñacuñán, Argentina: its role in understanding the Monte Desert biome. J Arid Environ 39:299–313

    Google Scholar 

  • Oliver WLR, Brisbin IL Jr, Takahashi S (1993) The Eurasian wild pig (Sus scrofa). In: Oliver WLR (ed) Pigs, peccaries and hippos. Status survey and conservation action plan. IUCN/SSC Pigs and Peccaries Specialist Group and IUCN/SSC Hippo Specialist Group, Gland, pp 112–121

    Google Scholar 

  • Palacio S, Bueno CG, Azorín J, Maestro M, Gómez-García D (2013) Wild-boar disturbance increases nutrient and C stores of geophytes in subalpine grasslands. Am J Bot 100(9):1790–1799

    PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2018) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-137, https://CRAN.R-project.org/package=nlme

  • Quevedo-Robledo L, Pucheta E, Ribas-Fernández Y (2010) Influences of interyear rainfall variability and microhabitat on the germinable seed bank of annual plants in a sandy Monte Desert. J Arid Environ 74(2):167–172

    Google Scholar 

  • R Development Core Team (2019) R: A Language and environment for statistical computing. Vienna, Austria

  • Reimoser F, Gossow H (1996) Impact of ungulates on forest vegetation and its dependence on the silvicultural system. For Ecol Manag 88(1–2):107–119

    Google Scholar 

  • Roig FA, Rossi B (2001) Flora y vegetación. In: Claver S, Roig-Juñent S (eds) El desierto del Monte: La Reserva de Biosfera de Ñacuñán. IADIZA, MAB, UNESCO. Ed. Triunfar, Buenos Aires, pp 41–75

    Google Scholar 

  • Royo AA, Carson WP (2005) The herb community of a tropical forest in central Panama: dynamics and impact of mammalian herbivores. Oecologia 145:66–75

    PubMed  Google Scholar 

  • Settele J, Hammen V, Hulme P, Karlson U, Klotz S, Kotarac M et al (2005) ALARM (Assessing Large-scale Environmental Risks for biodiversity withtested Methods). Gaia 14:69–72

    Google Scholar 

  • Seward NW, VerCauteren KC, Witmer GW, Engeman RM (2004) Feral swine impacts on agriculture and the environment. Sheep Goat Res J 12:34–40

    Google Scholar 

  • Siemann E, Carrillo JA, Gabler CA, Zipp R, Rogers WE (2009) Experimental test of the impacts of feral hogs on forest dynamics and processes in the southeastern US. For Ecol Manag 258(5):546–553

    Google Scholar 

  • Singer FJ, Swank WT, Clebsch EEC (1984) Effects of wild pig rooting in a deciduous forest. J Wildl Manag 48(2):464–473

    CAS  Google Scholar 

  • Stasi CR, Medero MN (1983) Estudio ecológico y bromatológico de Pitraea cuneato-ovata (Cav.) Caro, una especie forrajera del “Monte” mendocino y sanjuanino. Deserta 7:7–11

    Google Scholar 

  • Symonds MRE, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65:13–21

    Google Scholar 

  • Tierney TA, Cushman JH (2006) Temporal changes in native and exotic vegetation and soil characteristics following disturbances by feral pigs in a California grassland. Biol Invasions 8:1073–1089

    Google Scholar 

  • Villagra PE, Defossé GE, Del Valle HF, Tabeni S, Rostagno M, Cesca E, Abraham E (2009) Land use and disturbance effects on the dynamics of natural ecosystems of the Monte Desert: implications for their management. J Arid Environ 73:202–211

    Google Scholar 

  • Welander J (2000) Spatial and temporal dynamics of wild boar (Sus scrofa) rooting in a mosaic landscape. J Zool 252(2):263–271

    Google Scholar 

  • Wilson CJ (2004) Rooting damage to farmland in Dorset, southern England, caused by feral wild boar Sus scrofa. Mamm Rev 34(4):331–335

    Google Scholar 

  • Wisdom MJ, Vavra M, Boyd JM, Hemstrom MA, Ager AA, Johnson BK (2006) Understanding ungulate herbivory - episodic disturbance effects on vegetation dynamics: knowledge gaps and management needs. Wildl Soc Bull 34(2):283–292

    Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Google Scholar 

Download references

Acknowledgements

Special thanks to a large list of assistants for helping us do the fieldwork. To Diego Vazquez for helping us in the design of field experiment. To Daniel Dueñas for designing the map and to Yasmin Bobadilla, Soledad Albanese and a special thanks to María Eugenia Mosca for assisting us in statistical analysis. This Project was part of the EU-funded research project ALARM (Settele et al. 2005) to develop and test methods and protocols for assessment of large-scale environmental risks. Partially funded by ALARM (EU), Consejo Nacional de Investigaciones Científicas y Técnicas—CONICET (PIP 5944), Secretaría de Ciencia y Tecnología—SECYT (PICT 11768), Argentina. FJ acknowledges the support of grant CONICYT/PIA/BASAL FB 0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Cuevas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuevas, M.F., Campos, C.M., Ojeda, R.A. et al. Vegetation recovery after 11 years of wild boar exclusion in the Monte Desert, Argentina. Biol Invasions 22, 1607–1621 (2020). https://doi.org/10.1007/s10530-020-02206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-020-02206-8

Keywords

Navigation