Skip to main content

Advertisement

Log in

Combining the effects of biological invasion and climate change into systematic conservation planning for the Atlantic Forest

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Biological invasions and climate changes are the major causes of changes in biodiversity, which reduce, shift, and extinguish species ranges. While climate changes have been widely used in systematic conservation planning (SCP), biological invasions are rarely considered. Here, we combine the effects of climate changes and Artocarpus heterophyllus Lam. (Moraceae) invasion on the SCP for endemic aromatic fruit tree species from the Atlantic Forest (EFAF). We tested the effect of invasion on SCP measures of species turnover, biotic stability, and irreplaceability. Ecological niche models were used to establish species environmental suitability for the preindustrial period for both invasive species and EFAF and to forecast to the end of the century (2080–2100). We calculated the niche overlap between the invasive species and EFAF and tested the overlap significance using a null model. We tested the biological invasion effect on the results using results with no species invasion correction. The niche overlap between A. heterophyllus and EFAF was significant for 50% of species in the preindustrial period and for 33% in the future. The spatial patterns of species turnover, biotic stability, and irreplaceability had significant effects on biological invasion changing the spatial pattern in both shape and magnitude, which can misplace and overvalue conservation priorities. We showed that the disregard of biological invasion on SCP can cause negative effects on SCP under climate change. We strongly recommend accounting for biological invasion in the evaluation of SCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abreu RCR, Rodrigues PJFP (2010) Exotic tree Artocarpus heterophyllus (Moraceae) invades the Brazilian Atlantic Rainforest. Rodriguésia 61:677–688

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Andelman S, Willig MR (2002) Alternative configurations of conservation reserves for Paraguayan bats: considerations of spatial scale. Conserv Biol 16:1352–1363

    Article  Google Scholar 

  • Andelman S, Ball I, Davis F, Toms D (1999) SITES v. 1.0, an analytical toolbox for designing ecoregional conservation portfolios. Technical report, The Nature Conservancy, http://www.biogeog.ucsb.edu/projects/tnc/toolbox.htm/

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  Google Scholar 

  • Baliga MS, Shivashankara AR, Haniadka R, Dsouza J, Bhat HP (2011) Phytochemistry, nutritional and pharmacological properties of Artocarpus heterophyllus Lam (jackfruit): a review. Food Res Int 44:1800–1811

    Article  CAS  Google Scholar 

  • Balmford A, Moore JL, Brooks T, Burgess N, Hansen LA, Williams P, Rahbek C (2001) Conservation conflicts across Africa. Science 291:2616–2619

    Article  CAS  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: How, where, and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Bellard C, Leclerc C, Leroy B, Bakkenes M, Veloz S, Thuiller W, Courchamp W (2014) Vulnerability of biodiversity hotspots to global change. Global Ecol Biogeogr 23:1376–1386

    Article  Google Scholar 

  • Bergallo HG, Bergallo AC, Rocha HB, Rocha CFD (2016) Invasion by Artocarpus heterophyllus (Moraceae) in an island in the Atlantic Forest Biome, Brazil: distribution at the landscape, level, density and need for control. J Coast Conserv 20:191–198

    Article  Google Scholar 

  • Bini LM, Diniz-Filho JAF, Rangel TLFVB, Bastos RP, Pinto MP (2006) Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers Distrib 12:475–482

    Article  Google Scholar 

  • Bini LM, Diniz-Filho JAF, Rangel TFLVB, Akre TSB, Albaladejo RG, Albuquerque FS, Aparicio A, Araújo MB, Baselga A, Beck J, Belloq I, Böhning-Gaese K, Borges PAV, Castro-Parga I, Chey VK, Chown SL, De Marco P, Dobkin DS, Ferrer-Gastán D, Field R, Filloy J, Fleishman E, Gómez JF, Hortal J, Iverson JB, Kerr JT, Kissling D, Kitching IJ, León-Cortés JL, Lobo JM, Montoya D, Morales-Castilla I, Moreno JC, Oberdoff T, Olalla-Tárraga MÁ, Pausas JG, Qian H, Rahbek C, Rodríguez MÁ, Rueda M, Ruggiero A, Sackmann P, Sanders NJ, Terribile LC, Vetaas OR, Hawkins BA (2009) Coefficients shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography 32:193–204

    Article  Google Scholar 

  • Boni R, Novelli FZ, Silva AG (2009) Um alerta para os riscos de bioinvasão de jaqueiras, Artocarpus heterophyllus Lam., na Reserva Biológica Paulo Fraga Rodrigues, antiga Reserva Biológica Duas Bocas, no Espírito Santo, Sudeste do Brasil. Natureza on Line 7:51–55

    Google Scholar 

  • Bregman TP, Lees AC, Seddon N, MacGregor HEA, Darski B, Aleixo A, Bonsall MB, Tobias JA (2015) Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments. Ecology 96:2692–2704

    Article  Google Scholar 

  • Bregman TP, Lees AC, MacGregor HEA, Darski B, de Moura NG, Aleixo A, Barlow J, Tobias JA (2016) Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. Proc R Soc B 283:20161289

    Article  Google Scholar 

  • Brice MH, Pellerin S, Poulin M (2017) Does urbanization lead to taxonomic and functional homogenization in riparian forests? Divers Distrib 23:828–840

    Article  Google Scholar 

  • Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Global Change Biol 16:1145–1157

    Article  Google Scholar 

  • Cabeza M, Moilanen A (2001) Design of reserve networks and the persistency of biodiversity. Trends Ecol Evol 16:242–248

    Article  CAS  Google Scholar 

  • Collevatti RG, Terribile LC, Lima-Ribeiro MS, Nabout JC, de Oliveira G, Rangel TF, Rabelo SG, Diniz-Filho JAF (2012) A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a neotropical seasonally dry forest tree species. Mol Ecol 21:5843–5863

    Article  Google Scholar 

  • Collevatti RG, Lima-Ribeiro MS, Diniz-Filho JAF, de Oliveira G, Dobrovolski R, Terribile LC (2013) Stability of Brazilian seasonally dry forests under climate change: inferences for long-term conservation. Am J Plant Sci 4:792–805

    Article  Google Scholar 

  • De Oliveira G (2018) Human occupation explains species invasion better than biotic stability: evaluating Artocarpus heterophyllus Lam. (Moraceae; jackfruit) invasion in the Neotropics. J Plant Ecol. https://doi.org/10.1093/jpe/rtx017

    Article  Google Scholar 

  • De Oliveira G, Diniz-Filho JAF (2011) Evaluating environmental and geometrical constraints on endemic vertebrates of the semiarid Caatinga (Brazil). Basic Appl Ecol 12:664–673

    Article  Google Scholar 

  • De Oliveira G, Diniz-Filho JAF, Bini LM, Rangel TFLVB (2009) Conservation biogeography of mammals in the Cerrado biome under the unified theory of macroecology. Acta Oecol 35:630–638

    Article  Google Scholar 

  • De Oliveira G, Rangel TF, Lima-Ribeiro MS, Terribile LC, Diniz-Filho JAF (2014) Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography 37:637–647

    Article  Google Scholar 

  • De Oliveira G, Lima-Ribeiro MS, Terribile LC, Dobrovolski R, Telles MPC, Diniz-Filho JAF (2015) Conservation biogeography of the Cerrado’s wild edible plants under climate change: linking biotic stability with agricultural expansion. Am J Bot 102:1–8

    Article  Google Scholar 

  • Dietz H, Edwards PJ (2006) Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87:1359–1367

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM (2005) Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecol Biogeogr 14:177–185

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Global Ecol Biogeogr 12:53–64

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Pinto MP, Terribile LC, de Oliveira G, Vieira CM, Blamires D, Barreto BS, Carvalho P, Rangel TFLVB, Tôrres NM, Bastos R (2008) Conservation planning: a macroecological approach using the endemic terrestrial vertebrates of the Brazilian Cerrado. Oryx 42:567–577

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Rangel TF, Loyola RD, Hof C, Nogues-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  • Diniz-Filho JAF, Rodrigues H, Telles MP, de Oliveira G, Terribile LC, Soares TN, Nabout JC (2015) Correlation between genetic diversity and environmental suitability: taking uncertainty from ecological niche models into account. Mol Ecol Resour 15:1059–1066

    Article  Google Scholar 

  • Dobrovolski R, Loyola RD, Guilhaumon F, Gouveia SF, Diniz-Filho JAF (2013) Global agricultural expansion and carnivore conservation biogeography. Biol Conserv 165:162–170

    Article  Google Scholar 

  • Donoso I, Garcia D, Roduiguez-Perez J, Martinez D (2016) Incorporating seed fate into plant-frugivore networks increases interaction diversity across plant regeneration stages. Oikos 125:1762–1771

    Article  Google Scholar 

  • Eisenhauer N, Fisichelli NA, Frelich LE, Reich PB (2012) Interactive effects of global warming and ‘global worming’ on the initial establishment of native and exotic herbaceous plant species. Oikos 121:1121–1133

    Article  Google Scholar 

  • Fabricante JR, Araújo KCT, Andrade LA, Ferreira JVA (2012) Invasão biológica de Artocarpus heterophyllus Lam. (Moraceae) em um fragmento de Mata Atlântica no Nordeste do Brasil: impactos sobre a fitodiversidade e os solos dos sítios invadidos. Acta Bot Bras 26:339–407

    Article  Google Scholar 

  • Franklin J (2009) Mapping species distribution: spatial inference and prediction. Cambridge University Press, Cambridge

    Google Scholar 

  • Freitas WK, Magalhães LMS, Resende AS, Brasil FC, Vivès LR, Pinheiro MAS, Filho PL, Luz RV (2017) Invasion impact of Artocarpus heterophyllus Lam. (Moraceae) at the edge of an Atlantic Forest fragment in the municipality of Rio de Janeiro, Brazil. Biosci J 33:422–433

    Article  Google Scholar 

  • Giakoumi S, Guilhaumon F, Kark S, Terlizzi A, Claudet J, Felline S, Cerrano C, Coll M, Danovaro R, Fraschetti S, Koutsoubas D, Ledoux J, Mazor T, Merigot B, Micheli F, Katsanevakis S (2016) Space invaders; biological invasions in marine conservation planning. Divers Distrib 22:1220–1231

    Article  Google Scholar 

  • Giovanni RL, Bernacci C, Siqueira MF, Rocha FS (2012) The real task of selecting records for ecological niche models. Nat Conservacao 10:139–144

    Article  Google Scholar 

  • Griffith DA (2003) Spatial autocorrelation and spatial filtering—gaining understanding through theory and scientific visualization. Springer, Berlin

    Book  Google Scholar 

  • Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analysis. Ecology 87:2603–2613

    Article  Google Scholar 

  • Hawkins BA, Diniz-Filho JAF (2002) The mid-domain effect cannot explain the diversity gradient of Neartic birds. Global Ecol Biogeogr 11:419–426

    Article  Google Scholar 

  • Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Summaries, frequently asked questions, and cross-chapter boxes. A contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. World Meteorological Organization, Geneva, Switzerland, p 190

  • Jetz W, Rahbek C (2001) Geometric constraints explain much of the species richness pattern in African birds. Proc Natl Acad Sci USA 98:5661–5666

    Article  CAS  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation—trouble or new paradigm. Ecology 74:1659–1673

    Article  Google Scholar 

  • Lemes P, Loyola RD (2013) Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PLoS ONE 8:e54323

    Article  CAS  Google Scholar 

  • Levine JM (2008) Biological invasions. Curr Biol 18:57–60

    Article  Google Scholar 

  • Lima-Ribeiro MS, Varela S, González-Hernandez J, de Oliveira G, Diniz-Filho JAF, Terribile LC (2015) ecoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodivers Inform 10:1–21

    Article  Google Scholar 

  • Luck GW (2007) A review of the relationships between human population density and biodiversity. Biol Rev 82:607–645

    Article  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    Article  CAS  Google Scholar 

  • Mata RA, Tidon R, de Oliveira G, Vilela B, Diniz-Filho JAF, Rangel TF, Terribile LC (2017) Stacked species distribution and macroecological models provide incongruent predictions of species richness for Drosophilidae in the Brazilian savanna. Insect Conserv Divers 10:415–424

    Article  Google Scholar 

  • Meir E, Andelman S, Possingham HP (2004) Does conservation planning matter in a dynamic and uncertain world? Ecol Lett 7:615–622

    Article  Google Scholar 

  • Mello JHF, Moulton TP, Raíces DSL, Bergallo HG (2015) About rats and jackfruit trees: modeling the carrying capacity of a Brazilian Atlantic Forest spiny-rat Trinomys dimidiatus (Günther, 1877)—Rodentia, Echimyidae—population with varying jackfruit tree (Artocarpus heterophyllus L.) abundances. Braz J Biol 75:208–215

    Article  CAS  Google Scholar 

  • Mittermeier RA, Robles-Gil P, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreaux J, Fonseca GAB (2004) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City

    Google Scholar 

  • Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2011) Global biodiversity conservation: The critical role of hotspots. In: Zachos FE, Habel JC (eds) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, Berlin, pp 3–22

    Chapter  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–855

    Article  CAS  Google Scholar 

  • Peterson AT, Samy AM (2016) Geographic potential of disease caused by Ebola and Marburg viruses in Africa. Acta Trop 162:114–124

    Article  Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629

    Article  CAS  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographical distributions. Princeton University Press, Princeton

    Google Scholar 

  • Pressey RL, Johnson IR, Wilson PD (1994) Shades of irreplaceability—towards a measure of contribution of sites to a reservation goal. Biodivers Conserv 3:242–262

    Article  Google Scholar 

  • Ribeiro MC, Metzer JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Rossiter-Rachor NA, Setterfield SA, Douglas MM, Hutley LB, Cook GD, Schimdt S (2009) Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna. Ecol Appl 19:1546–1560

    Article  CAS  Google Scholar 

  • Sih A, Ferrari MCO, Harris DJ (2011) Evolution and behavioural responses to human- induced rapid environmental change. Evol Appl 4:367–387

    Article  Google Scholar 

  • Silva JMC, Sousa MC, Castelletti CHM (2004) Areas of endemism for passerine birds in the Atlantic Forest. Global Ecol Biogeogr 13:85–92

    Article  Google Scholar 

  • Tabarelli M, Pinto LP, Silva JMC, Hirota MM, Bedê LC (2005) Desafios e oportunidades para a conservação da biodiversidade na Mata Atlântica brasileira. Megadiversidade 1:132–138

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Terrible LC, Lima-Ribeiro MS, Araújo M, Bizao N, Collevatti RG, Dobrovolski R, Franco A, Guilhaumon F, Lima JS, Murakami DM, Nabout JC, de Oliveira G, Oliveira LK, Rabello SG, Rangel TF, Simon LM, Soares TN, Telles MPC, Diniz-Filho JAF (2012) Areas of climate stability of species ranges in the Brazilian Cerrado: disentangling uncertainties through time. Nat Conservacao 10:152–159

    Article  Google Scholar 

  • Thomas CA (1980) Jackfruit, Artocarpus heterophyllus (Moraceae), as source of food and income. Econ Bot 34:154–159

    Article  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Global Change Biol 10:2020–2027

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interaction in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  Google Scholar 

  • Varela S, Anderson RP, García-Valdés R, Fernádez-Gonzáles F (2014) Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37:1084–1091

    Google Scholar 

  • Varela S, Terribile LC, de Oliveira G, González-Hernandez J, Lima-Ribeiro MS (2015) ecoClimate versus Worldclim: variables climáticas SIG para trabajar en biogeografia. Ecosistemas 24:88–92

    Article  Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarosik V, Maron JL, Pergl J, Schaffner U, Sun Y, Pysek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [442103/2014-0] and developed in the context of the National Institutes for Science and Technology (INCT) in Ecology, Evolution and Biodiversity Conservation, supported by MCTIC/CNPq [465610/2014-5] and FAPEG. DSS and MCSS are grateful for the scholarship provided by FAPESB [6166/2014 and 5878/2015]. We are grateful to Dr. Thiago F. Rangel for providing the use of BioEnsembles, to the World Climate Research Programmer’s Working Group on Coupled Modeling for providing CMIP5, to the climate-modeling group from NCAR for producing and making available CCSM, to Dr. Alessandra N. Caiafa for the first insight on the risk of jackfruit invasion, and to two anonymous reviewers that helped with their suggestions to improve and clarify previous versions of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme de Oliveira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 887 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, G., de Souza Barreto, B., da Silva dos Santos, D. et al. Combining the effects of biological invasion and climate change into systematic conservation planning for the Atlantic Forest. Biol Invasions 20, 2753–2765 (2018). https://doi.org/10.1007/s10530-018-1727-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-018-1727-y

Keywords

Navigation