Skip to main content

Advertisement

Log in

Polymeric nanoparticles for DNA vaccine-based cancer immunotherapy: a review

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Cancer is one of the leading causes of death and mortality in the world. There is an essential need to develop new drugs or therapeutic approaches to manage treatment-resistant cancers. Cancer immunotherapy is a type of cancer treatment that uses the power of the body’s immune system to prevent, control, and eliminate cancer. One of the materials used as a vaccine in immunotherapy is DNA. The application of polymeric nanoparticles as carriers for DNA vaccines could be an effective therapeutic approach to activate immune responses and increase antigen presentation efficiency. Various materials have been used as polymeric nanoparticles, including: chitosan, poly (lactic-co-glycolic acid), Polyethylenimine, dendrimers, polypeptides, and polyesters. Application of these polymer nanoparticles has several advantages, including increased vaccine delivery, enhanced antigen presentation, adjuvant effects, and more sustainable induction of the immune system. Besides many clinical trials and commercial products that were developed based on polymer nanoparticles, there is still a need for more comprehensive studies to increase the DNA vaccine efficiency in cancer immunotherapy using this type of carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abelev B, Adam J, Adamová D, Aggarwal MM, Rinella GA, Agnello M et al (2014) Exclusive J/ψ photoproduction off Protons in Ultraperipheral p-Pb collisions at s NN = 5.02 TeV. Phys Rev Lett 113(23):232504

    Article  CAS  PubMed  Google Scholar 

  • Agadjanyan MG, Ghochikyan A, Petrushina I, Vasilevko V, Movsesyan N, Mkrtichyan M et al (2005) Prototype Alzheimer’s disease vaccine using the immunodominant B cell epitope from β-amyloid and promiscuous T cell epitope pan HLA DR-binding peptide. J Immunol 174(3):1580–1586

    Article  CAS  PubMed  Google Scholar 

  • Ai W, Yue Y, Xiong S, Xu W (2013) Enhanced protection against pulmonary mycobacterial challenge by chitosan-formulated polyepitope gene vaccine is associated with increased pulmonary secretory IgA and gamma‐interferon + T cell responses. Microbiol Immunol 57(3):224–235

    Article  CAS  PubMed  Google Scholar 

  • Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7(5):657–663

    Article  CAS  PubMed  Google Scholar 

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alford A, Tucker B, Kozlovskaya V, Chen J, Gupta N, Caviedes R et al (2018) Encapsulation and ultrasound-triggered release of G-quadruplex DNA in multilayer hydrogel microcapsules. Polymers 10(12):1342

    Article  PubMed  PubMed Central  Google Scholar 

  • Ascierto PA, Daniele B, Hammers H, Hirsh V, Kim J, Licitra L et al (2017) Perspectives in immunotherapy: meeting report from the “Immunotherapy Bridge”, Napoli, Nov 30th 2016. Springer

  • Banik BL, Fattahi P, Brown JL (2016) Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev 8(2):271–299

    Google Scholar 

  • Barouch DH (2006) Rational design of gene-based vaccines. J Pathol 208(2):283–289

    Article  CAS  PubMed  Google Scholar 

  • Behnaz N, Karizi SZ, Nazarian S, Kazemi R, Motamedi MJ, Fasihi-Ramandi M et al (2019) Construction and Structural Assessment of Nanocapsule containing HER2-MUC1 chimeric protein as a candidate for a vaccine against breast Cancer. Int J Cancer Manag 12(5):8

  • Bhavsar MD, Amiji MM (2007) Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). J Controll Release 119(3):339–348

    Article  CAS  Google Scholar 

  • Bivas-Benita M, Laloup M, Versteyhe S, Dewit J, De Braekeleer J, Jongert E et al (2003) Generation of Toxoplasma gondii GRA1 protein and DNA vaccine loaded chitosan particles: preparation, characterization, and preliminary in vivo studies. Int J Pharm 266(1–2):17–27

    Article  CAS  PubMed  Google Scholar 

  • Bolhassani A, Yazdi SR (2009) DNA immunization as an efficient strategy for vaccination. Avicenna J Med Biotechnol 1(2):71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhassani A, Safaiyan S, Rafati S (2011) Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 10(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bramwell VW, Perrie Y (2005) Particulate delivery systems for vaccines. Crit Rev Ther Drug Carr Syst 22(2)

  • Brown DM, Lampe AT, Farris E, Williams JA, Pannier AK (2017) Chitosan nanoparticle delivery of Influenza A Virus DNA vaccine enhances antibody class switching and abrogates weight loss post IAV challenge. J Immunol 198(1Supplement):147143–147143

    Google Scholar 

  • Bueter CL, Lee CK, Wang JP, Ostroff GR, Specht CA, Levitz SM (2014) Spectrum and mechanisms of inflammasome activation by chitosan. J Immunol 192(12):5943–5951

    Article  CAS  PubMed  Google Scholar 

  • Carroll EC, Jin L, Mori A, Muñoz-Wolf N, Oleszycka E, Moran HB et al (2016) The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44(3):597–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YZ, Yao XL, Ruan GX, Zhao QQ, Tang GP, Tabata Y et al (2012) Gene-carried chitosan‐linked polyethylenimine induced high gene transfection efficiency on dendritic cells. Biotechnol Appl Chem 59(5):346–352

    CAS  Google Scholar 

  • Chen C, Hou Z, Chen S, Guo J, Chen Z, Hu J et al (2022) Photothermally responsive smart elastomer composites based on aliphatic polycarbonate backbone for biomedical applications. Compos Part B: Eng 240:109985

    Article  CAS  Google Scholar 

  • Cheng W-F, Hung C-F, Chai C-Y, Hsu K-F, He L, Ling M et al (2001) Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Investig 108(5):669–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherif MS, Mbanefo EC, Shuaibu MN, Kodama Y, Avenido EF, Campos-Alberto E et al (2016) Human-applicable dendrigraft poly-l-lysine-based nanoparticle-coated Plasmodium yoelii-transamidase DNA vaccine is immunogenic and protective as the polyethylenimine-based formulation. J Bioactive Compatible Polym 31(4):334–347

    Article  CAS  Google Scholar 

  • Cho H-J, Han S-E, Im S, Lee Y, Kim YB, Chun T et al (2011) Maltosylated polyethylenimine-based triple nanocomplexes of human papillomavirus 16L1 protein and DNA as a vaccine co-delivery system. Biomaterials 32(20):4621–4629

    Article  CAS  PubMed  Google Scholar 

  • Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Osada K, Imaizumi A, Kataoka K, Nakano K (2015) Feasibility of a subcutaneously administered block/homo-mixed polyplex micelle as a carrier for DNA vaccination in a mouse tumor model. J Controll Release 206:220–231

    Article  CAS  Google Scholar 

  • Daftarian P, Kaifer AE, Li W, Blomberg BB, Frasca D, Roth F et al (2011) Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res 71(24):7452–7462

    Article  CAS  PubMed  Google Scholar 

  • Danaeifar M (2022a) New horizons in developing cell lysis methods: a review. Biotechnol Bioeng 119(11):3007–3021

    Article  CAS  PubMed  Google Scholar 

  • Danaeifar M (2022b) Recent advances in gene therapy: genetic bullets to the root of the problem. Clin Exp Med 1–15

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Controll Release 161(2):505–522

    Article  CAS  Google Scholar 

  • Dastan T, Turan K (2004) In vitro characterization and delivery of chitosan-DNA microparticles into mammalian cells. J Pharm Pharm Sci 7(2):205–214

    CAS  PubMed  Google Scholar 

  • Deirram N, Zhang C, Kermaniyan SS, Johnston AP, Such GK (2019) pH-responsive polymer nanoparticles for drug delivery. Macromol Rapid Commun 40(10):1800917

    Article  Google Scholar 

  • DeLong RK, Akhtar U, Sallee M, Parker B, Barber S, Zhang J et al (2009) Characterization and performance of nucleic acid nanoparticles combined with protamine and gold. Biomaterials 30(32):6451–6459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberl M, Langermans JA, Frost PA, Vervenne RA, van Dam GJ, Deelder AM et al (2001) Cellular and humoral immune responses and protection against schistosomes induced by a radiation-attenuated vaccine in chimpanzees. Infect Immun 69(9):5352–5362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimian M, Taghavi S, Mokhtarzadeh A, Ramezani M, Hashemi M (2017) Co-delivery of doxorubicin encapsulated PLGA nanoparticles and Bcl-xL shRNA using alkyl-modified PEI into breast cancer cells. Appl Biochem Biotechnol 183(1):126–136

    Article  CAS  PubMed  Google Scholar 

  • Farris E, Brown DM, Ramer-Tait AE, Pannier AK (2016) Micro-and nanoparticulates for DNA vaccine delivery. Exp Biol Med 241(9):919–929

    Article  CAS  Google Scholar 

  • Feng G, Jiang Q, Xia M, Lu Y, Qiu W, Zhao D et al (2013) Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PLoS ONE 8(4): e61135

  • Feng S, Wang J, Zhang L, Chen Q, Yue W, Ke N et al (2020) Coumarin-containing light-responsive carboxymethyl chitosan micelles as nanocarriers for controlled release of pesticide. Polymers 12(10):2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn OJ (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3(8):630–641

    Article  CAS  PubMed  Google Scholar 

  • Fischer D, Bieber T, Li Y, Elsässer H-P, Kissel T (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 16(8):1273–1279

    Article  CAS  PubMed  Google Scholar 

  • Fischer W, Quadir MA, Barnard A, Smith DK, Haag R (2011) Controlled release of DNA from photoresponsive hyperbranched polyglycerols with oligoamine shells. Macromol Biosci 11(12):1736–1746

    Article  CAS  PubMed  Google Scholar 

  • Fu K, Pack DW, Klibanov AM, Langer R (2000) Visual evidence of acidic environment within degrading poly (lactic-co-glycolic acid)(PLGA) microspheres. Pharm Res 17(1):100–106

    Article  CAS  PubMed  Google Scholar 

  • Furugaki K, Cui L, Kunisawa Y, Osada K, Shinkai K, Tanaka M et al (2014) Intraperitoneal administration of a tumor-associated antigen SART3, CD40L, and GM-CSF gene-loaded polyplex micelle elicits a vaccine effect in mouse tumor models. PLos ONE 9(7)

  • Gao W, Lai JC, Leung S (2012) Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications. Front Physiol 3:321

    Article  PubMed  PubMed Central  Google Scholar 

  • Garaiova Z, Strand SP, Reitan NK, Lélu S, Størset S, Berg K et al (2012) Cellular uptake of DNA–chitosan nanoparticles: the role of clathrin-and caveolae-mediated pathways. Int J Biol Macromol 51(5):1043–1051

    Article  CAS  PubMed  Google Scholar 

  • Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP et al (2004) ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 103(2):317–326

    Article  CAS  PubMed  Google Scholar 

  • García M, Aloisio C, Onnainty R, Ullio-Gamboa G (2018) Self-assembled nanomaterials. Nanobiomaterials. Elsevier, pp 41–94

  • Gordon JR, Ma Y, Churchman L, Gordon SA, Dawicki W (2014) Regulatory dendritic cells for immunotherapy in immunologic diseases. Front Immunol 5:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z et al (2008) Co-delivery of cancer-associated antigen and toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8 + T cell-mediated anti-tumor immunity. Vaccine 26(39):5046–5057

    Article  CAS  PubMed  Google Scholar 

  • Hanes J, Cleland JL, Langer R (1997) New advances in microsphere-based single-dose vaccines. Adv Drug Deliv Rev 28(1):97–119

    Article  CAS  PubMed  Google Scholar 

  • Hong SJ, Ahn MH, Lee YW, Pal S, Sangshetti J, Arote RB (2018) Biodegradable polymeric nanocarrier-based immunotherapy in hepatitis vaccination. Cutting-Edge Enabling Technologies for Regenerative Medicine. Springer, pp 303–320

  • Horo H, Das S, Mandal B, Kundu LM (2019) Development of a photoresponsive chitosan conjugated prodrug nano-carrier for controlled delivery of antitumor drug 5-fluorouracil. Int J Biol Macromol 121:1070–1076

    Article  CAS  PubMed  Google Scholar 

  • Howard KA, Li XW, Somavarapu S, Singh J, Green N, Atuah KN et al (2004) Formulation of a microparticle carrier for oral polyplex-based DNA vaccines. Biochim et Biophys Acta (BBA) 1674(2):149–157

    CAS  PubMed  Google Scholar 

  • Hu W-W, Chen Y-J, Ruaan R-C, Chen W-Y, Cheng Y-C, Chien C-C (2014) The regulation of DNA adsorption and release through chitosan multilayers. Carbohydr Polym 99:394–402

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Xu B, Xu J, Shou D, Liu E, Gao J et al (2015) Microneedle-assisted dendritic cell-targeted nanoparticles for transcutaneous DNA immunization. Polym Chem 6(3):373–379

    Article  CAS  Google Scholar 

  • Huang Y (2019) Polymer chemistry. Polymer 10(15):1841–1980

    Google Scholar 

  • Jones D, Corris S, McDonald S, Clegg J, Farrar G (1997) Poly (DL-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine 15(8):814–817

    Article  CAS  PubMed  Google Scholar 

  • Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73–95ra73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasturi SP, Sachaphibulkij K, Roy K (2005) Covalent conjugation of polyethyleneimine on biodegradable microparticles for delivery of plasmid DNA vaccines. Biomaterials 26(32):6375–6385

    Article  CAS  PubMed  Google Scholar 

  • Kasturi SP, Qin H, Thomson KS, El-Bereir S, Cha S-c, Neelapu S et al (2006) Prophylactic anti-tumor effects in a B cell lymphoma model with DNA vaccines delivered on polyethylenimine (PEI) functionalized PLGA microparticles. J Controll Release 113(3):261–270

    Article  CAS  Google Scholar 

  • Kim TH, Jin H, Kim HW, Cho M-H, Cho CS (2006) Mannosylated chitosan nanoparticle–based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Mol Cancer Ther 5(7):1723–1732

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Niu L, Larson P, Kucaba TA, Murphy KA, James BR et al (2018) Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials 164:38–53

    Article  CAS  PubMed  Google Scholar 

  • Klencke B, Matijevic M, Urban RG, Lathey JL, Hedley ML, Berry M et al (2002) Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a phase I study of ZYC101. Clin Cancer Res 8(5):1028–1037

    CAS  PubMed  Google Scholar 

  • Koag M-C, Kou Y, Ouzon-Shubeita H, Lee S (2014) Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine. Nucleic Acids Res 42(13):8755–8766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodama Y, Nakamura T, Kurosaki T, Egashira K, Mine T, Nakagawa H et al (2014) Biodegradable nanoparticles composed of dendrigraft poly-L-lysine for gene delivery. Eur J Pharm Biopharm 87(3):472–479

    Article  CAS  PubMed  Google Scholar 

  • Kokate RA, Chaudhary P, Sun X, Thamake SI, Maji S, Chib R et al (2016) Rationalizing the use of functionalized poly-lactic-co-glycolic acid nanoparticles for dendritic cell-based targeted anticancer therapy. Nanomedicine 11(5):479–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kou Y, Koag M-C, Lee S (2015) N7 methylation alters hydrogen-bonding patterns of guanine in duplex DNA. J Am Chem Soc 137(44):14067–14070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B 75(1):1–18

    Article  CAS  Google Scholar 

  • Kunath K, von Harpe A, Fischer D, Petersen H, Bickel U, Voigt K et al (2003) Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Controll Release 89(1):113–125

    Article  CAS  Google Scholar 

  • Layek B, Lipp L, Singh J (2015) APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine. J Controll Release 207:143–153

    Article  CAS  Google Scholar 

  • Li L, Schwendeman SP (2005) Mapping neutral microclimate pH in PLGA microspheres. J Controll Release 101(1–3):163–173

    Article  CAS  Google Scholar 

  • Li X, Kong X, Shi S, Zheng X, Guo G, Wei Y et al (2008) Preparation of alginate coated chitosan microparticles for vaccine delivery. BMC Biotechnol 8(1):1–11

    Article  Google Scholar 

  • Li G, Liu Z, Liao B, Zhong N (2009) Induction of Th1-type immune response by chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen Der p 2 for oral vaccination in mice. Cell Mol Immunol 6(1):45–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Meng J, Ma X, Lin J, Lu X (2022) Advanced materials for the delivery of vaccines for infectious diseases. Biosaf Health

  • Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim M, Badruddoza AZM, Firdous J, Azad M, Mannan A, Al-Hilal TA et al (2020) Engineered nanodelivery systems to improve DNA vaccine technologies. Pharmaceutics 12(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisziewicz J, Bakare N, Calarota SA, Bánhegyi D, Szlávik J, Ujhelyi E et al (2012) Single DermaVir immunization: dose-dependent expansion of precursor/memory T cells against all HIV antigens in HIV-1 infected individuals. PLoS ONE 7(5):e35416

  • Liu MA (2019) A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines 7(2):37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu MA, Ulmer JB (2005) Human clinical trials of plasmid DNA vaccines. Adv Genet 55:25–40

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Lv D, Liu S, Gong J, Wang D, Xiong M et al (2013) Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice. PLoS ONE 8(4)

  • Lopes A, Vandermeulen G, Préat V (2019) Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 38(1):1–24

    Article  Google Scholar 

  • Lou PJ, Cheng WF, Chung YC, Cheng CY, Chiu LH, Young TH (2009) PMMA particle-mediated DNA vaccine for cervical cancer. J Biomed Mater Res Part A 88(4):849–857

    Article  Google Scholar 

  • Luzardo-Alvarez A, Blarer N, Peter K, Romero JF, Reymond C, Corradin G et al (2005) Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solid immune response in mice. J Controll Release 109(1–3):62–76

    Article  CAS  Google Scholar 

  • Ma Y-F, Yang Y-W (2010) Delivery of DNA-based cancer vaccine with polyethylenimine. Eur J Pharm Sci 40(2):75–83

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Chen M, Kaushal S, McElroy M, Zhang Y, Ozkan C et al (2012) PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Int J Nanomed 7:1475

    Article  CAS  Google Scholar 

  • Matsueda S, Graham DY (2014) Immunotherapy in gastric cancer. World J Gastroenterol 20(7):1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mbanefo EC, Kumagai T, Kodama Y, Kurosaki T, Furushima-Shimogawara R, Cherif MS et al (2015) Immunogenicity and anti-fecundity effect of nanoparticle coated glutathione S-transferase (SjGST) DNA vaccine against murine Schistosoma japonicum infection. Parasitol Int 64(4):24–31

    Article  CAS  PubMed  Google Scholar 

  • McKeever U, Barman S, Hao T, Chambers P, Song S, Lunsford L et al (2002) Protective immune responses elicited in mice by immunization with formulations of poly (lactide-co-glycolide) microparticles. Vaccine 20(11–12):1524–1531

    Article  CAS  PubMed  Google Scholar 

  • Meerak J, Wanichwecharungruang SP, Palaga T (2013) Enhancement of immune response to a DNA vaccine against Mycobacterium tuberculosis Ag85B by incorporation of an autophagy inducing system. Vaccine 31(5):784–790

    Article  CAS  PubMed  Google Scholar 

  • Melief CJ, van Hall T, Arens R, Ossendorp F, van der Burg SH (2015) Therapeutic cancer vaccines. J Clin Investig 125(9):3401–3412

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalak G, Głuszek K, Piktel E, Deptuła P, Puszkarz I, Niemirowicz K et al (2016) Polymeric nanoparticles–a novel solution for delivery of antimicrobial agents. Med Stud/Studia Medyczne 32(1):56–62

    Article  Google Scholar 

  • Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH et al (2016) Cancer treatment and survivorship statistics, 2016. Cancer J Clin 66(4):271–289

    Article  Google Scholar 

  • Minigo G, Scholzen A, Tang CK, Hanley JC, Kalkanidis M, Pietersz GA et al (2007) Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 25(7):1316–1327

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi Z, Abolhassani M, Dorkoosh F, Hosseinkhani S, Gilani K, Amini T et al (2011) Preparation and evaluation of chitosan–DNA–FAP-B nanoparticles as a novel non-viral vector for gene delivery to the lung epithelial cells. Int J Pharm 409(1–2):307–313

    Article  CAS  PubMed  Google Scholar 

  • Mohit E, Bolhassani A, Zahedifard F, Seyed N, Eslamifar A, Taghikhani M et al (2013) Immunomodulatory effects of IP-10 chemokine along with PEI600-Tat delivery system in DNA vaccination against HPV infections. Mol Immunol 53(1–2):149–160

    Article  CAS  PubMed  Google Scholar 

  • Mori A, Oleszycka E, Sharp FA, Coleman M, Ozasa Y, Singh M et al (2012) The vaccine adjuvant alum inhibits IL-12 by promoting PI 3 kinase signaling while chitosan does not inhibit IL‐12 and enhances T h1 and T h17 responses. Eur J Immunol 42(10):2709–2719

    Article  CAS  PubMed  Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003

    Article  CAS  PubMed  Google Scholar 

  • Muzzarelli RA (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 8(2):292–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negash T, Liman M, Rautenschlein S (2013) Mucosal application of cationic poly (D, L-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease. Vaccine 31(36):3656–3662

    Article  CAS  PubMed  Google Scholar 

  • Newman KD, Sosnowski DL, Kwon GS, Samuel J (1998) Delivery of MUC1 mucin peptide by poly (d, l-lactic‐co‐glycolic acid) microspheres induces type 1 T helper immune responses. J Pharm Sci 87(11):1421–1427

    Article  CAS  PubMed  Google Scholar 

  • Nikitczuk KP, Schloss RS, Yarmush ML, Lattime EC (2013) PLGA-polymer encapsulating tumor antigen and CpG DNA administered into the tumor microenvironment elicits a systemic antigen-specific IFN-γ response and enhances survival. J Cancer Ther 4(1):280

    Article  PubMed  PubMed Central  Google Scholar 

  • Nitta SK, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14(1):1629–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Hagan DT, Singh M, Ulmer JB (2004) Microparticles for the delivery of DNA vaccines. Immunol Rev 199(1):191–200

    Article  PubMed  Google Scholar 

  • Otten GR, Schaefer M, Doe B, Liu H, Srivastava I, zur Megede J et al (2005) Enhanced potency of plasmid DNA microparticle human immunodeficiency virus vaccines in rhesus macaques by using a priming-boosting regimen with recombinant proteins. J Virol 79(13):8189–8200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan C-H, Nair N, Adams RJ, Zink MC, Lee E-Y, Polack FP et al (2008) Dose-dependent protection against or exacerbation of disease by a polylactide glycolide microparticle-adsorbed, alphavirus-based measles virus DNA vaccine in rhesus macaques. Clin Vaccine Immunol 15(4):697–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardi N, Hogan MJ, Porter FW, Weissman D (2018) mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov 17(4):261–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parhi P, Mohanty C, Sahoo SK (2012) Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 17(17–18):1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Pathak RK, Wen R, Kolishetti N, Dhar S (2017) A prodrug of two approved drugs, cisplatin and chlorambucil, for chemo war against cancer. Mol Cancer Ther 16(4):625–636

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA (2019) Mathematical models for controlled release kinetics. Medical applications of controlled release. CRC Press, pp 169–188

  • Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S, Roberts CJ et al (2002) Polyethylenimine-graft-poly (ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug Chem 13(4):845–854

    Article  CAS  PubMed  Google Scholar 

  • Pilipenko I, Korzhikov-Vlakh V, Sharoyko V, Zhang N, Schäfer-Korting M, Rühl E et al (2019) pH-sensitive chitosan–heparin nanoparticles for effective delivery of genetic drugs into epithelial cells. Pharmaceutics 11(7):317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poecheim J, Barnier-Quer C, Collin N, Borchard G (2016) Ag85A DNA vaccine delivery by nanoparticles: influence of the formulation characteristics on immune responses. Vaccines 4(3):32

    Article  PubMed  PubMed Central  Google Scholar 

  • Prabha S, Zhou W-Z, Panyam J, Labhasetwar V (2002) Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm 244(1–2):105–115

    Article  CAS  PubMed  Google Scholar 

  • Prego C, Paolicelli P, Díaz B, Vicente S, Sánchez A, González-Fernández Á et al (2010) Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 28(14):2607–2614

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Huang Y, Qiu C, Yue X, Deng L, Wan Y et al (2010) The use of PEGylated poly [2-(N, N-dimethylamino) ethyl methacrylate] as a mucosal DNA delivery vector and the activation of innate immunity and improvement of HIV-1-specific immune responses. Biomaterials 31(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Rabu C, Rangan L, Florenceau L, Fortun A, Charpentier M, Dupré E et al (2019) Cancer vaccines: designing artificial synthetic long peptides to improve presentation of class I and class II T cell epitopes by dendritic cells.Oncoimmunology 8(4):e1560919

  • Rejinold NS, Chennazhi K, Nair S, Tamura H, Jayakumar R (2011) Biodegradable and thermo-sensitive chitosan-g-poly (N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydr Polym 83(2):776–786

    Article  CAS  Google Scholar 

  • Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA (2010) Polymeric particles in vaccine delivery. Curr Opin Microbiol 13(1):106–112

    Article  CAS  PubMed  Google Scholar 

  • Romestand B, Rolland J-L, Commeyras A, Coussot G, Desvignes I, Pascal R et al (2010) Dendrigraft poly-L-lysine: a non-immunogenic synthetic carrier for antibody production. Biomacromolecules 11(5):1169–1173

    Article  CAS  PubMed  Google Scholar 

  • Rosa SS, Prazeres DM, Azevedo AM, Marques MP (2021) mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine 39(16):2190–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosalia RA, Cruz LJ, van Duikeren S, Tromp AT, Silva AL, Jiskoot W et al (2015) CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 40:88–97

    Article  CAS  PubMed  Google Scholar 

  • Roy D, Brooks WL, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42(17):7214–7243

    Article  CAS  PubMed  Google Scholar 

  • Saade F, Petrovsky N (2012) Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines 11(2):189–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleh T, Bolhassani A, Shojaosadati SA, Aghasadeghi MR (2015) MPG-based nanoparticle: an efficient delivery system for enhancing the potency of DNA vaccine expressing HPV16E7. Vaccine 33(28):3164–3170

    Article  CAS  PubMed  Google Scholar 

  • Saraswathy M, Gong S (2013) Different strategies to overcome multidrug resistance in cancer. Biotechnol Adv 31(8):1397–1407

    Article  CAS  PubMed  Google Scholar 

  • Schmeer M, Buchholz T, Schleef M (2017) Plasmid DNA manufacturing for indirect and direct clinical applications. Hum Gene Ther 28(10):856–861

    Article  CAS  PubMed  Google Scholar 

  • Seferian PG, Martinez ML (2000) Immune stimulating activity of two new chitosan containing adjuvant formulations. Vaccine 19(6):661–668

    Article  CAS  PubMed  Google Scholar 

  • Segal R, Miller K, Jemal A (2018) Cancer statistics, 2018. Cancer J Clin 68(1):7–30

    Article  Google Scholar 

  • Sharma S, Parmar A, Kori S, Sandhir R (2016) PLGA-based nanoparticles: a new paradigm in biomedical applications. TRAC Trends Anal Chem 80:30–40

    Article  CAS  Google Scholar 

  • Sheets EE, Urban RG, Crum CP, Hedley ML, Politch JA, Gold MA et al (2003) Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am J Obstet Gynecol 188(4):916–926

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P et al (2006) Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117(1):78–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi G-N, Zhang C-N, Xu R, Niu J-F, Song H-J, Zhang X-Y et al (2017) Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials 113:191–202

    Article  CAS  PubMed  Google Scholar 

  • Shim B-S, Park S-M, Quan J-S, Jere D, Chu H, Song MK et al (2010) Intranasal immunization with plasmid DNA encoding spike protein of SARS-coronavirus/polyethylenimine nanoparticles elicits antigen-specific humoral and cellular immune responses. BMC Immunol 11:1–9

    Article  Google Scholar 

  • Sivalingam G, Madras G (2003) Thermal degradation of poly (ε-caprolactone). Polym Degrad Stab 80(1):11–16

    Article  CAS  Google Scholar 

  • Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13(8):592–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JD, Morton LD, Ulery BD (2015) Nanoparticles as synthetic vaccines. Curr Opin Biotechnol 34:217–224

    Article  CAS  PubMed  Google Scholar 

  • Son S, Kim WJ (2010) Biodegradable nanoparticles modified by branched polyethylenimine for plasmid DNA delivery. Biomaterials 31(1):133–143

    Article  CAS  PubMed  Google Scholar 

  • Soofiyani SR, Hallaj-Nezhadi S, Lotfipour F, Hosseini AM, Baradaran B (2016) Gene therapy based on interleukin-12 loaded chitosan nanoparticles in a mouse model of fibrosarcoma. Iran J Basic Med Sci 19(11):1238

    PubMed  PubMed Central  Google Scholar 

  • Stephens AJ, Burgess-Brown NA, Jiang S (2021) Beyond just peptide antigens: the complex world of peptide-based cancer vaccines. Front Immunol 12:696791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Zhang N (2010) Cationic polymer optimization for efficient gene delivery. Mini Rev Med Chem 10(2):108–125

    Article  CAS  PubMed  Google Scholar 

  • Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V (2019) Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Objects 20:100397

    Article  CAS  Google Scholar 

  • Suschak JJ, Williams JA, Schmaljohn CS (2017) Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccines Immunother 13(12):2837–2848

    Article  Google Scholar 

  • Tahamtan A, Ghaemi A, Gorji A, Kalhor HR, Sajadian A, Tabarraei A et al (2014) Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J Biomed Sci 21(1):69

    Article  PubMed  PubMed Central  Google Scholar 

  • Tahamtan A, Tabarraei A, Moradi A, Dinarvand M, Kelishadi M, Ghaemi A et al (2015) Chitosan nanoparticles as a potential nonviral gene delivery for HPV-16 E7 into mammalian cells. Artif cells Nanomed Biotechnol 43(6):366–372

    Article  CAS  PubMed  Google Scholar 

  • Tahamtan A, Barati M, Tabarraei A, Mohebbi SR, Shirian S, Gorji A et al (2018) Antitumor Immunity Induced by genetic immunization with Chitosan Nanoparticle formulated adjuvanted for HPV-16 E7 DNA vaccine. Iran J Immunol 15(4):269–280

    PubMed  Google Scholar 

  • Talsma SS, Babensee JE, Murthy N, Williams IR (2006) Development and in vitro validation of a targeted delivery vehicle for DNA vaccines. J Controll Release 112(2):271–279

    Article  CAS  Google Scholar 

  • Tan L, Han S, Ding S, Xiao W, Ding Y, Qian L et al (2017) Chitosan nanoparticle-based delivery of fused NKg2D–Il-21 gene suppresses colon cancer growth in mice. Int J Nanomed 12:3095

    Article  CAS  Google Scholar 

  • Tepper M, Shoval A, Hoffer O, Confino H, Schmidt M, Kelson I et al (2013) Thermographic investigation of tumor size, and its correlation to tumor relative temperature, in mice with transplantable solid breast carcinoma. J Biomed Opt 18(11):111410

    Article  PubMed  Google Scholar 

  • Thomann J-S, Heurtault B, Weidner S, Brayé M, Beyrath J, Fournel S et al (2011) Antitumor activity of liposomal ErbB2/HER2 epitope peptide-based vaccine constructs incorporating TLR agonists and mannose receptor targeting. Biomaterials 32(20):4574–4583

    Article  CAS  PubMed  Google Scholar 

  • Ullas PT, Madhusudana SN, Desai A, Sagar BKC, Jayamurugan G, Rajesh YBRD et al (2014) Enhancement of immunogenicity and efficacy of a plasmid DNA rabies vaccine by nanoformulation with a fourth-generation amine-terminated poly (ether imine) dendrimer. Int J Nanomed 9:627

    Google Scholar 

  • Un K, Kawakami S, Suzuki R, Maruyama K, Yamashita F, Hashida M (2010) Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy. Biomaterials 31(30):7813–7826

    Article  CAS  PubMed  Google Scholar 

  • van Riet E, Ainai A, Suzuki T, Kersten G, Hasegawa H (2014) Combatting infectious diseases; nanotechnology as a platform for rational vaccine design. Adv Drug Deliv Rev 74:28–34

    Article  PubMed  Google Scholar 

  • Vanparijs N, Nuhn L, De Geest BG (2017) Transiently thermoresponsive polymers and their applications in biomedicine. Chem Soc Rev 46(4):1193–1239

    Article  CAS  PubMed  Google Scholar 

  • Walter E, Moelling K, Pavlovic J, Merkle HP (1999) Microencapsulation of DNA using poly (DL-lactide-co-glycolide): stability issues and release characteristics. J Controll Release 61(3):361–374

    Article  CAS  Google Scholar 

  • Wang C, Ge Q, Ting D, Nguyen D, Shen H-R, Chen J et al (2004) Molecularly engineered poly (ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater 3(3):190–196

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR et al (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomed 6:765

    CAS  Google Scholar 

  • Wen R, Banik B, Pathak RK, Kumar A, Kolishetti N, Dhar S (2016) Nanotechnology inspired tools for mitochondrial dysfunction related diseases. Adv Drug Deliv Rev 99:52–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen R, Umeano AC, Chen P, Farooqi AA (2018) Polymer-based drug delivery systems for cancer. Crit Rev Ther Drug Carr Syst 35(6)

  • Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA (2019) Nanoparticle systems for cancer vaccine. Nanomedicine 14(5):627–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whang CH, Lee HK, Kundu S, Murthy SN, Jo S (2018) Pluronic-based dual‐stimuli sensitive polymers capable of thermal gelation and p H‐dependent degradation for in situ biomedical application. J Appl Polym Sci 135(31):46552

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood KC, Little SR, Langer R, Hammond PT (2005) A family of hierarchically self-assembling linear‐dendritic hybrid polymers for highly efficient targeted gene delivery. Angew Chem Int Ed 44(41):6704–6708

    Article  CAS  Google Scholar 

  • Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL et al (2006) Pathogen recognition and development of particulate vaccines: does size matter? Methods 40(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Shi K, Qu Y, Chu B, Qian Z (2019) Engineering nanoparticles for targeted delivery of nucleic acid therapeutics in tumor. Mol Ther-Methods Clin Dev 12:1–18

    Article  PubMed  Google Scholar 

  • Xing Y, Cheng E, Yang Y, Chen P, Zhang T, Sun Y et al (2011) Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv Mater 23(9):1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Xing L, Fan Y-T, Zhou T-J, Gong J-H, Cui L-H, Cho K-H et al (2018) Chemical modification of chitosan for efficient vaccine delivery. Molecules 23(2):229

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Ye J, Liu S (2007) Synthesis of well-defined cyclic poly (N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior. Macromolecules 40(25):9103–9110

    Article  CAS  Google Scholar 

  • Xu S, Zhang R, Zhao W, Zhu Y, Wei W, Liu X et al (2017) Self-assembled polymeric nanoparticles film stabilizing gold nanoparticles as a versatile platform for ultrasensitive detection of carcino-embryonic antigen. Biosens Bioelectron 92:570–576

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Jie L, Yongqi W, Weiming X, Juqun X, Yanbing D et al (2015) Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity. Biochem Biophys Res Commun 463(3):336–343

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Li Y, Jin S, Xu J, Wang PC, Liang X-J et al (2015) Engineered biomaterials for development of nucleic acid vaccines. Biomater Res 19(1):1–9

    Article  Google Scholar 

  • Yao W, Peng Y, Du M, Luo J, Zong L (2013) Preventative vaccine-loaded mannosylated chitosan nanoparticles intended for nasal mucosal delivery enhance immune responses and potent tumor immunity. Mol Pharm 10(8):2904–2914

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Finn OJ (2006) DNA vaccines for cancer too. Cancer Immunol Immunother 55(2):119–130

    Article  PubMed  Google Scholar 

  • Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Zhao F, Cai K, Zhang H, Gu N, Dou J (2017) Polyethylenimine modified nanoparticle adjuvant increases therapeutic efficacy of DNA vaccine Ag85A-ESAT-6-IL-21 in mice infected with Mycobacterium tuberculosis. Int J Clin Exp Med 10(8):12123–12131

    Google Scholar 

  • Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M et al (2011) Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32(14):3666–3678

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Seth A, Wibowo N, Zhao C-X, Mitter N, Yu C et al (2014) Nanoparticle vaccines. Vaccine 32(3):327–337

    Article  PubMed  Google Scholar 

  • Zhou X, Liu B, Yu X, Zha X, Zhang X, Chen Y et al (2007) Controlled release of PEI/DNA complexes from mannose-bearing chitosan microspheres as a potent delivery system to enhance immune response to HBV DNA vaccine. J Controll Release 121(3):200–207

    Article  CAS  Google Scholar 

  • Zou W, Liu C, Chen Z, Zhang N (2009) Studies on bioadhesive PLGA nanoparticles: a promising gene delivery system for efficient gene therapy to lung cancer. Int J Pharm 370(1–2):187–195

    Article  CAS  PubMed  Google Scholar 

  • Zuppardi F, Malinconico M, d’Agosto F, D’ayala GG, Cerruti P (2020) Well-defined thermo-responsive copolymers based on oligo (ethylene glycol) methacrylate and pentafluorostyrene for the removal of organic dyes from water. Nanomaterials 10(9):1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziba Veisi Malekshahi.

Ethics declarations

Conflict of interest

The authors declare that there is no potential conflict of interest related to this research and publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danaeifar, M., Negahdari, B., Eslam, H.M. et al. Polymeric nanoparticles for DNA vaccine-based cancer immunotherapy: a review. Biotechnol Lett 45, 1053–1072 (2023). https://doi.org/10.1007/s10529-023-03383-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-023-03383-x

Keywords

Navigation