Skip to main content
Log in

Perspectives of nervonic acid production by Yarrowia lipolytica

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

A Correction to this article was published on 19 May 2022

This article has been updated

Abstract

Nervonic acid (cis-15-tetracosenoic acid, 24:1Δ15) is a long chain monounsaturated fatty acid, mainly exists in white matt er of the human brains. It plays an important role in the development of nervous system and curing neurological diseases. The limited natural sources and high price are considered limiting factors for the extensive application of nervonic acid. Yarrowia lipolytica is a high lipid producing yeast and engineered strain which can produce nervonic acid. The biosynthesis of nervonic acid has yet to be investigated, although the metabolism has been examined for couple of years. Normally, oleic acid is considered the origin of nervonic acid synthesis through fatty acid prolongation, where malonyl-CoA and acyl-CoA are initially concise by 3-ketoacyl-CoA synthase (KCS). To meet the high requirement of industrial production, the optimization of fermentation and bioreactors configurations are necessary tools to be carried out. This review article summarizes the research literature on advancements and recent trends about the production, synthesis and properties of nervonic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  • Adrio JL (2017) Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels. Biotechnol Bioeng 114(9):1915–1920

    Article  CAS  PubMed  Google Scholar 

  • Ali N, Gong H, Giwa AS, Yuan Q, Wang KJ (2019a) Metagenomic analysis and characterization of acidogenic microbiome and effect of pH on organic acid production. Arch Microbiol 201:1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Ali N, Gong H, Giwa AS, Liu X, Wang KJ (2019b) Evaluation of bacterial association in methane generation pathways of an anaerobic digesting sludge via metagenomic sequencing. Arch Microbiol 202:31–41

    Article  PubMed  Google Scholar 

  • Amminger GP, Schäfer MR, Klier CM (2012) Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high-risk individuals. Mol Psychiatry 17(12):1150–1152

    Article  CAS  PubMed  Google Scholar 

  • Assies J, Pouwer F, Lok A (2010) Plasma and erythrocyte fatty acid patterns in patients with recurrent depression: a matched case-control study. PLoS ONE 5(5):10635

    Article  Google Scholar 

  • Bays HE (2021) Ten things to know about ten cardiovascular disease risk factors. Am J Prev Cardiol 5:100149

    Article  PubMed  PubMed Central  Google Scholar 

  • Beopoulos A, Cescut J, Haddouche R (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48(6):375–387

    Article  CAS  PubMed  Google Scholar 

  • Bettger WJ, Dimichelle-Ranalli E, Dillingham B (2003) Nervonic acid is transferred from the maternal diet to milk and tissues of suckling rat pups. J Nutr Biochem 14(3):160–165

    Article  CAS  PubMed  Google Scholar 

  • Bettger WJ, Mccorquodale ML, Blackadar CB (2005) The effect of a Tropaeolum speciosum oil supplement on the nervonic acid content of sphingomyelin in rat tissues. J Nutr Biochem 12(8):492–496

    Article  Google Scholar 

  • Cassagne C, Lessire R, Bessoule JJ (1994) Biosynthesis of very long chain fatty acids in higher plants. Prog Lipid Res 33(1):55–69

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri S, Ghosh S, Bhattacharyya DK (1998) Effect of mustard meal on the production of arachidonic acid by Mortierella elongata SC-208. J Am Oil Chem Soc 75(8):1053–1055

    Article  CAS  Google Scholar 

  • Chivandi E, Davidson BC, Erlwanger KHA (2008) Comparison of the lipid and fatty acid profiles from the kernels of the fruit of Ximenia caffra and Ricinodendron rautanenii from Zimbabwe. Ind Crops Prod 27(1):29–32

    Article  CAS  Google Scholar 

  • Comlekcioglu U, Ozose E, Akyol I (2010) Fatty acid analysis of anaerobic ruminal fungi Neocallimastix, Caecomyces and Orpinomyces. Int J Agric Biol 12(4):635–637

    CAS  Google Scholar 

  • Costaglioli P, Jérme J, Garcia C (2005) Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis. Biochim Biophys Acta 1734(3):247–258

    Article  CAS  PubMed  Google Scholar 

  • De Carvalho CCCR, Caramujo MJ (2018) The various roles of fatty acids. Molecules 23(10):2583

    Article  PubMed Central  Google Scholar 

  • Dhobale M, Wadhwani N, Mehendale SS (2011) Reduced levels of placental long chain polyunsaturated fatty acids in preterm deliveries. Prostaglandins Leukot Essent Fatty Acids 85(3–4):149–153

    Article  CAS  PubMed  Google Scholar 

  • Dyal SD, Narine SS (2005) Implications for the use of Mortierella fungi in industrial production of essential fatty acids. Food Res International 38(4):445–467

    Article  CAS  Google Scholar 

  • Evans DR, Parikh VV, Khan MM (2003) Red blood cell membrane essential fatty acid metabolism in early psychotic patients following antipsychotic drug treatment. Prostaglandins Leukot Essent Fatty Acids 69(6):393–399

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Yuan C, Jin Y (2018) Characterization of 3-ketoacyl-coA synthase in a nervonic acid producing oleaginous microalgae Mychonastes afer. Algal Res 31:225–231

    Article  Google Scholar 

  • Fillet S, Ronchel C, Callejo C (2017) Engineering Rhodosporidium toruloides for the production of very long-chain monounsaturated fatty acid-rich oils. Appl Genet Mol Biotechnol 101(19):7271–7280

    CAS  Google Scholar 

  • Folch J, Stanley GHA (1957) simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    Article  CAS  PubMed  Google Scholar 

  • Goncalves FAG, Colen G, Takahashi JA (2014) Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci World 2014(2):476207

    CAS  Google Scholar 

  • Guiheneuf F, Khan A, Tran LS (2016) Genetic engineering: A promising tool to engender physiological, biochemical, and molecular stress resilience in green microalgae. Front Plant Sci 7(518):400

    PubMed  PubMed Central  Google Scholar 

  • Guo Y, Mietkiewska E, Francis T (2009) Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene. Plant Mol Biol 69(5):565–575

    Article  CAS  PubMed  Google Scholar 

  • Huai D, Zhang Y, Zhang C (2015) Combinatorial effects of fatty acid elongase enzymes on nervonic acid production in Camelina sativa. PLoS ONE 10(6):131755

    Article  Google Scholar 

  • Hui Y (2012) Cloning, vector construction and genetic transformation of the full-length CDS sequences of cardamine and blue vegetables β-ketoacyl-CoA synthase (KCS) gene. Hunan Agriculture University 7–10

  • Jantzen E, Berdal BP, Omland T (1979) Cellular fatty acid composition of Francisella tularensis. J Clin Microbiol 10(6):928–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jart A (1978) The fatty acid composition of various cruciferous seeds. J Am Oil Chem Soc 55(12):873–875

    Article  CAS  Google Scholar 

  • Jumbe T, Comstock SS, Harris WS (2016) Whole-blood fatty acids are associated with executive function in Tanzanian children aged 4-6 years: a cross-sectional study. Br J Nutr 116(9):1537–1545

    Article  CAS  PubMed  Google Scholar 

  • Jun T, Wang J (2004) A textbook with vigorous vitality-Introduction to “Biochemistry” (Third Edition). Chinese Teaching Universities 1:57–58

    Google Scholar 

  • Karlsson M, Staffan M, Brandberg J (2006) Serum phospholipid fatty acids, adipose tissue, and metabolic markers in obese adolescents. Obesity 14(11):1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Karlsson M, Staffan M, Brandberg J (2017) Plasma nervonic acid is a potential biomarker for major depressive disorder: a pilot study. Int J Neuropsychopharmacol 21(3):207–215

    Google Scholar 

  • Katre G, Joshi C, Khot M (2012) Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel. AMB Express 2(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemp P, Lander DJ, Orpin CG (1984) The lipids of the rumen fungus Piromonas communis. Gen Microbiol 130(1):27–37

    CAS  Google Scholar 

  • Li CL, Tan NZ, Bi SX (2004) Nervonic acid improves learning memory ability in normal mice and mice with experimental memory impairment: the experimental biology. FASEB J

  • Li WB, Sun CG, Wang FF (2014) Nervonic acid and its application in the prevention and treatment of encephalopathy. Pharm Progress 38(08):591–596

    Google Scholar 

  • Luo AQ, Wang XM, Liu CF (2014) Determination of nervonic acid in garlic oil. China Contemp Med 21(14):14–16

    CAS  Google Scholar 

  • Ma BL, Liang SF, Zhao DY (2004) Study on plant containing nervonic acid. Northwestern J Bot 24(13):2362–2365

    CAS  Google Scholar 

  • Marillia EF, Francis T, Falk KC (2014) Palliser’s promise: Brassica carinata, An emerging western Canadian crop for delivery of new bio-industrial oil feedstocks. Biocatal Agric Biotechnol 3(1):65–74

    Article  Google Scholar 

  • Martins D, Custodio L, Barreira L (2021) Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs 11(7):2259–2281

    Article  Google Scholar 

  • Merrill AH, Schmelz EM, Wang E (2019) Importance of sphingolipids and inhibitors of sphingolipid metabolism as components of animal diets. J Nutr 127(5):830–833

    Article  Google Scholar 

  • Michalak I, Chojnacka K (2015) Algae as production systems of bioactive compounds. Eng Life Sci 15(2):160–176

    Article  CAS  Google Scholar 

  • Miyazaki M, Man WC, Ntambi J (2001) Targeted disruption of stearoyl-CoA desaturase1 gene in mice causes atrophy of sebaceous and meibomian glands and depletion of wax esters in the eyelid. J Nutr 131(9):2260–2268

    Article  CAS  PubMed  Google Scholar 

  • Nichols PD, Palmisano AC, Smith GA (1986) Lipids of the antarctic sea ice diatom Nitzschia cylindrus. Phytochemistry 25(7):1649–1653

    Article  CAS  Google Scholar 

  • Paz A, Lagüe P, Lamoureux G (2016) Effect of saturated very long-chain fatty acids on the organization of lipid membranes: a study combining 2H NMR spectroscopy and molecular dynamics simulations. J Phys Chem B 120(28):6951–6960

    Article  Google Scholar 

  • Piazza GJ, Foglia TA (2001) Rapeseed oil for oleochemical usage. Eur J Lipid Sci Technol 103(7):450–454

    Article  CAS  Google Scholar 

  • Poulous A (1995) Very long chain fatty acids in higher animals, a review. Lipids 30(1):1–14

    Article  Google Scholar 

  • Ratledge C, Cohen Z (2008) Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? Lipid Technology 20(7):155–160

    Article  Google Scholar 

  • Rezanka T, Cudlín J, Podojil M (1987) Very-long-chain fatty acids from lower organism. Folia Microbiol 32(2):149–176

    Article  CAS  Google Scholar 

  • Saadaoui I, Ghazal GA, Bounnit T (2016) Evidence of thermo and halotolerant Nannochloris isolate suitable for biodiesel production in Qatar Culture Collection of Cyanobacteria and Microalgae. Algal Res 14:39–47

    Article  Google Scholar 

  • Shimakate T, Stumpf PK (1982) Isolation and function of spinach leaf β-ketoacyl-[acyl-carrier-protein] synthases. Proc Natl Acad Sci 79(19):5808

    Article  Google Scholar 

  • Song S, Wang H, Jia SS (2018) Analysis of correlation between serum fatty acid profile and cognitive impairment in the elderly. Chin J Prev Med 52(6):636–641

    CAS  Google Scholar 

  • Suzanne M, Mocking RJT, Koeter MWJ (2016) Levels of red blood cell fatty acids in patients with psychosis, their unaffected siblings, and healthy controls. Schizophr Bull 42(2):358–368

    Article  Google Scholar 

  • Taylor D, Francis T, Guo Y (2009) Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use. Plant Biotechnol J 7(9):925–938

    Article  CAS  PubMed  Google Scholar 

  • Umemoto H, Sawada K, Kurata A (2014) Fermentative production of nervonic acid by Mortierella capitata RD000969. J Oleo Sci 63(7):671

    Article  CAS  PubMed  Google Scholar 

  • Vozella V, Basit A, Misto A (2017) Age-dependent changes in nervonic acid-containing sphingolipids in mouse hippocampus. Mol Cell Biol Lipids 1862(12):1502–1511

    Article  CAS  Google Scholar 

  • Vries, Mocking GJ, Lok R (2016) Fatty acid concentrations in patients with posttraumatic stress disorder compared to healthy controls. J Affect Disord 205:351–359

    Article  PubMed  Google Scholar 

  • Wang XY, Wang XQ (2010) Research status and application prospects of nervonic acid. China Oil 35(03):1–5

    Google Scholar 

  • Wang XY, Fan JS, Wang XQ (2006) Research on development and utilization of nervonic acid containing plants in China. China Oil 3:69–71

    Google Scholar 

  • Wang QT, Lu YD, Xin Y (2016) Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J 88(6):1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Tu XH, Wei F (2019) Research progress of ultra-long chain fatty acids. Chin Food Nutr 25(08):5–11

    CAS  Google Scholar 

  • Wassef MK, Ammon V, Wyllie TD (1975) Polar lipids of Macrophomina phaseolina. Lipids 10(3):185–190

    Article  CAS  Google Scholar 

  • Wei JB (2014) Cloning and plant transformation of MEX gene of Allium sativum. Hunan Agric Univ 12–15

  • Wei YC, Fan JS, Li JJ (2018) Study on oil content and fatty acid composition of Acer truncatum seed kernels from different producing areas. Chin Cereals Oil Assoc 33(12):69–73

    Google Scholar 

  • Xie D, Miller E, Sharpe P (2017) Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous. Biotechnol Bioeng 114(4):798–812

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Kondo K, Maeba R (2014) Proportion of nervonic acid in serum lipids is associated with serum plasmalogen levels and metabolic syndrome. Oleo science 63(5):527–537

    Article  CAS  Google Scholar 

  • Yu T, Zhou YJ, Wenning L (2017) Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nat Commun 8(1):15587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan C, Liu J, Fan Y (2011) Mychonastes afer HSO-3-1 as a potential new source of biodiesel. Biotechnol Biofuels 4(1):1–8

    Article  Google Scholar 

  • Yuan H, Wang QH, Wang YY (2013) Effect of docosahexaenoic acid and nervonic acid on the damage of learning and memory abilities in rats induced by 1-bromopropane. Chin J Ind Hyg Occup Dis 31(11):806–810

    CAS  Google Scholar 

  • Zhou YJ, Buijs NA, Zhu Z (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China (Grant No. 2017ZX07102-004), National Key Technology Support Program of China (Grant No. 2014BAC27B01), National Natural Science Foundation of China (No. 31770077), the “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences (XDA 21060400), and QIBEBT (Grant: QIBEBT-ZZBS 201805). We are grateful to CAS President’s International Fellowship Initiative Program for additional financial support. We are also thankful to the University of Chinese Academy of Sciences and Directorate of Colleges, Higher Education, Archives and Libraries Department, Government of Khyber Pakhtunkhwa, Pakistan for administrative support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasir Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The word Arabian Gulf is replaced with Persian Gulf in the text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giwa, A.S., Ali, N. Perspectives of nervonic acid production by Yarrowia lipolytica. Biotechnol Lett 44, 193–202 (2022). https://doi.org/10.1007/s10529-022-03231-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-022-03231-4

Keywords

Navigation