Skip to main content
Log in

A comparison between constitutive and inducible transgenic expression of the PhRIP I gene for broad-spectrum resistance against phytopathogens in potato

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To engineer broad spectrum resistance in potato using different expression strategies.

Results

The previously identified Ribosome-Inactivating Protein from Phytolacca heterotepala was expressed in potato under a constitutive or a wound-inducible promoter. Leaves and tubers of the plants constitutively expressing the transgene were resistant to Botrytis cinerea and Rhizoctonia solani, respectively. The wound-inducible promoter was useful in driving the expression upon wounding and fungal damage, and conferred resistance to B. cinerea. The observed differences between the expression strategies are discussed considering the benefits and features offered by the two systems.

Conclusions

Evidence is provided of the possible impact of promoter sequences to engineer BSR in plants, highlighting that the selection of a suitable expression strategy has to balance specific needs and target species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12:8711–8721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cillo F, Palukaitis P (2014) Transgenic resistance. Adv Virus Res 90:35–146

    Article  PubMed  Google Scholar 

  • Collinge D (2016) Plant pathogen resistance biotechnology. Wiley, Hoboken

    Book  Google Scholar 

  • Collinge DB, Jørgensen HJ, Lund OS, Lyngkjær MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Ann Rev Phytopathol 48:269–291

    Article  CAS  Google Scholar 

  • Coppola V et al (2013) Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genom 14:1

    Article  Google Scholar 

  • Coppola M et al (2015) Prosystemin overexpression in tomato enhances resistance to different biotic stresses by activating genes of multiple signaling pathways. Plant Mol Biol Report 33:1270–1285

    Article  CAS  PubMed  Google Scholar 

  • Corrado G, Karali M (2009) Inducible gene expression systems and plant biotechnology. Biotechnol Adv 27:733–743

    Article  PubMed  Google Scholar 

  • Corrado G et al (2005) Inducible expression of a Phytolacca heterotepala ribosome-inactivating protein leads to enhanced resistance against major fungal pathogens in tobacco. Phytopathol 95:206–215

    Article  CAS  Google Scholar 

  • Corrado G, Scarpetta M, Alioto D, Di Maro A, Polito L, Parente A, Rao R (2008) Inducible antiviral activity and rapid production of the Ribosome-inactivating protein I from Phytolacca heterotepala in tobacco. Plant Sci 174:467–474

    Article  CAS  Google Scholar 

  • Dai W, Bonos S, Guo Z, Meyer W, Day P, Belanger F (2003) Expression of pokeweed antiviral proteins in creeping bentgrass. Plant Cell Rep 21:497–502

    Article  CAS  PubMed  Google Scholar 

  • Dang L, Van Damme EJ (2015) Toxic proteins in plants. Phytochem 117:51–64

    Article  CAS  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    Article  CAS  PubMed  Google Scholar 

  • Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucl Acid Res 13:4777–4788

    Article  CAS  Google Scholar 

  • Desmyter S, Vandenbussche F, Hao Q, Proost P, Peumans WJ, Van Damme EJ (2003) Type-1 ribosome-inactivating protein from iris bulbs: a useful agronomic tool to engineer virus resistance? Plant Mol Biol 51:567–576

    Article  CAS  PubMed  Google Scholar 

  • Devoto A, Leckie F, Lupotto E, Cervone F, De Lorenzo G (1998) The promoter of a gene encoding a polygalacturonase-inhibiting protein of Phaseolus vulgaris L. is activated by wounding but not by elicitors or pathogen infection. Planta 205:165–174

    Article  CAS  PubMed  Google Scholar 

  • Di Maro A, Chambery A, Daniele A, Casoria P, Parente A (2007) Isolation and characterization of heterotepalins, type 1 ribosome-inactivating proteins from Phytolacca heterotepala leaves. Phytochem 68:767–776

    Article  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Ann Rev Phytopathol 42:185–209

    Article  CAS  Google Scholar 

  • Dutt M, Dhekney SA, Soriano L, Kandel R, Grosser JW (2014) Temporal and spatial control of gene expression in horticultural crops. Hortic Res 1:14047

    Article  PubMed  PubMed Central  Google Scholar 

  • Görschen E, Dunaeva M, Hause B, Reeh I, Wasternack C, Parthier B (1997) Expression of the ribosome-inactivating protein JIP60 from barley in transgenic tobacco leads to an abnormal phenotype and alterations on the level of translation. Planta 202:470–478

    Article  PubMed  Google Scholar 

  • Iglesias R, Citores L, Ragucci S, Russo R, Di Maro A, Ferreras JM (2016) Biological and antipathogenic activities of ribosome-inactivating proteins from Phytolacca dioica L. Biochim Biophys Acta 1860:1256–1264

    Article  CAS  PubMed  Google Scholar 

  • Keller H et al (1999) Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell 11:223–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

    Article  CAS  PubMed  Google Scholar 

  • Lodge JK, Kaniewski WK, Tumer NE (1993) Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci USA 90:7089–7093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddaloni M, Forlani F, Balmas V, Donini G, Stasse L, Corazza L, Motto M (1997) Tolerance to the fungal pathogen Rhizoctonia solani AG4 of transgenic tobacco expressing the maize ribosome-inactivating protein b-32. Transgenic Res 6:393–402

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nielsen K, Boston RS (2001) Ribosome-inactivating proteins: a plant perspective. Ann Rev Plant Biol 52:785–816

    Article  CAS  Google Scholar 

  • Punja ZK (2006) Recent developments toward achieving fungal disease resistance in transgenic plants. Can J Plant Pathol 28:S298–S308

    Article  CAS  Google Scholar 

  • Rizhsky L, Mittler R (2001) Inducible expression of bacterio-opsin in transgenic tobacco and tomato plants. Plant Mol Biol 46:313–323

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Reinstädler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen-and wound-induced signaling. Plant Cell 14:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarma BK, Singh HB, Fernando D, Silva RN, Gupta VK (2016) Enhancing Plant disease resistance without r genes. Trends Biotechnol 34:523–525

    Article  CAS  PubMed  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Stirpe F, Gilabert-Oriol R (2015) Ribosome-inactivating proteins: an overview. In: Gopalakrishnakone P, Carlini C, Ligabue-Braun R (eds) Plant toxins. Springer, Dordrecht, pp 1–29

    Chapter  Google Scholar 

  • Van Damme EJ, Hao Q, Chen Y, Barre A, Vandenbussche F, Desmyter F, Rougé P, Peumans WJ (2001) Ribosome-inactivating proteins: a family of plant proteins that do more than inactivate ribosomes. Crit Rev Plant Sci 20:395–465

    Article  Google Scholar 

  • Wang P, Zoubenko O, Tumer NE (1998) Reduced toxicity and broad spectrum resistance to viral and fungal infection in transgenic plants expressing pokeweed antiviral protein II. Plant Mol Biol 38:957–964

    Article  CAS  PubMed  Google Scholar 

Download references

Supporting information

Supplementary Table 1—Primers employed and their main features.

Supplementary Table 2—Analysis of variance of the measures of the lesion area produced by B. cinerea as a function of the genotype (Desirèe, COST and IND) and time (2, 4 and 7 days following inoculations). Post-hoc test on lesions indicated that the COST and IND genotypes are not different (p = 0.125).

Supplementary Fig. 1—Statistical analysis of the severity of the symptoms 7 days following inoculation. The graph reports mean values and its standard error of the lesion area. Different letters represent statistically different groups (Tukey; p < 0.05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giandomenico Corrado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzales-Salazar, R., Cecere, B., Ruocco, M. et al. A comparison between constitutive and inducible transgenic expression of the PhRIP I gene for broad-spectrum resistance against phytopathogens in potato. Biotechnol Lett 39, 1049–1058 (2017). https://doi.org/10.1007/s10529-017-2335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2335-0

Keywords

Navigation