Skip to main content

Advertisement

Log in

Exosomes derived from tumor cells genetically modified to express Mycobacterium tuberculosis antigen: a novel vaccine for cancer therapy

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To examine the potential of exosomes derived from the tumor cells, which had been genetically modified to express a Mycobacterium tuberculosis antigen, as a cancer vaccine aimed at overcoming the weak immunogenicity of tumor antigens.

Results

We transfected B16 melanoma cells with a plasmid encoding the M. tuberculosis antigen, early secretory antigenic target-6 (ESAT-6). The secreted exosomes bearing both tumor-associated antigens and the pathogenic antigen (or their epitopes) were collected. When the exosomes were injected into foot pads of mice, they significantly (p < 0.05) evoked cellular immunity against both ESAT-6, and B16 tumor cells. Intra-tumoral injection of the exosomes significantly suppressed (p < 0.001) tumor growth in syngeneic B16 tumor-bearing mice, while the exosomes derived from the non-transfected B16 cells showed no effect on tumor growth, although both exosomes should have similar tumor antigens.

Conclusions

Exosomes bearing both tumor antigens and the M. tuberculosis antigen (or their epitopes) have a high potential as a candidate for cancer vaccine to overcome the immune escape by tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • André F, Schartz NEC, Chaput N, Flament C, Raposo G, Amigorena S, Angevin E, Zitvogel L (2002a) Tumor-derived exosomes: a new source of tumor rejection antigens. Vaccine 20:A28–A31

    Article  PubMed  Google Scholar 

  • André F, Schartz NEC, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L (2002b) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305

    Article  PubMed  Google Scholar 

  • Chiang CL-L, Coukos G, Kandalaft LE (2015) Whole tumor antigen vaccines: where are we? Vaccines 3:344–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan K, Bliskovsky VV, Parkhurst MR, Ankri C, Prickett TD, Crystal JS, Li YF, El-Gamil M, Rosenberg SA, Robbins PF (2015) Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J Clin Invest 125:3981–3991

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, Li G (2008) Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 16:782–790

    Article  CAS  PubMed  Google Scholar 

  • de Jonge MI, Pehau-Arnaudet G, Fretz MM, Romain F, Bottai D, Brodin P, Honoré N, Marchal G, Jiskoot W, England P, Cole ST, Brosch R (2007) ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J Bacteriol 189:6028–6034

    Article  PubMed  PubMed Central  Google Scholar 

  • de Leon J, Jiang G, Ma Y, Rubin E, Fortune S, Sun J (2012) Mycobacterium tuberculosis ESAT-6 exhibits a unique membrane-interacting activity that is not found in its ortholog from non-pathogenic Mycobacterium smegmatis. J Biol Chem 287:44184–44191

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP, Blanchard T, McMahon D, Sidney J, Sette A, Baker BM, Mandoiu II, Srivastava PK (2014) Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med 211:2231–2248

    Article  PubMed  PubMed Central  Google Scholar 

  • Filipazzi P, Bürdek M, Villa A, Rivoltini L, Huber V (2012) Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol 22:342–349

    Article  CAS  PubMed  Google Scholar 

  • Gorman C, Padmanabhan R, Howard BH (1983) High efficiency DNA-mediated transformation of primate cells. Science 221:551–553

    Article  CAS  PubMed  Google Scholar 

  • Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515:577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada K, Yoshihara C, Ito T, Tani K, Tagawa M, Sakuragawa N, Itoh H, Koyama Y (2012) Antitumor effect of chondroitin sulfate-coated ternary granulocyte macrophage-colony-stimulating factor plasmid complex for ovarian cancer. J Gene Med 14:120–127

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Yoshihara C, Tanaka NI, Koyama Y (2008) Efficient in vivo gene transfection by stable DNA/PEI complexes coated by hyaluronic acid. J Drug Target 16:276–281

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Yoshihara C, Hamada K, Koyama Y (2010) DNA/polyethylenimine/hyaluronic acid small complex particles and tumor suppression in mice. Biomaterials 31:2912–2918

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Koyama Y, Otsuka M (2014) Preparation of calcium phosphate nanocapsule including deoxyribonucleic acid-polyethyleneimine-hyaluronic acid ternary complex for durable gene delivery. J Pharm Sci 103:179–184

    Article  CAS  PubMed  Google Scholar 

  • Johnstone RM (2006) Exosomes biological significance: a concise review. Blood Cells Mol Dis 36:315–321

    Article  CAS  PubMed  Google Scholar 

  • Koyama Y, Yoshihara C, Ito T (2015a) Novel antitumor strategy utilizing a plasmid expressing a Mycobacterium tuberculosis antigen as a “danger signal” to block immune escape of tumor cells. Pharmaceutics 7:165–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Koyama Y, Sugiura K, Yoshihara C, Inaba T, Ito T (2015b) Highly effective non-viral antitumor gene therapy system comprised of biocompatible small plasmid complex particles consisting of pDNA, anionic polysaccharide, and fully deprotected linear polyethylenimine. Pharmaceutics 7:152–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Ledwith BJ, Manam S, Troilo PJ, Barnum AB, Pauley CJ, Griffiths TG 2nd, Harper LB, Beare CM, Bagdon WJ, Nichols WW (2000) Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology 43:258–272

    Article  CAS  PubMed  Google Scholar 

  • Pathak SK, Basu S, Basu KK, Banerjee A, Pathak S, Bhattacharyya A, Kaisho T, Kundu M, Basu J (2007) Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol 8:610–618

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Manoranjan J, Pan M, Bohsali A, Xu J, Liu J, McDonald KL, Szyk A, LaRonde-LeBlanc N, Gao LY (2008) Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect Immun 76:5478–5487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L (2007) Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67:2912–2915

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang L, Lin Z, Tao L, Chen M (2014) More efficient induction of antitumor T cell immunity by exosomes from CD40L gene-modified lung tumor cells. Mol Med Rep 9:125–131

    CAS  PubMed  Google Scholar 

  • Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xiu F, Cai Z, Wang J, Wang Q, Fu Y, Cao X (2007) Increased induction of antitumor response by exosomes derived from interleukin-2 gene-modified tumor cells. J Canc Res Clin Oncol 133:389–399

    Article  Google Scholar 

  • Yang C, Kim S-H, Bianco NR, Robbins PD (2011) Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model. PLoS ONE 6:e22517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshihara C, Hamada K, Kuroda M, Koyama Y (2012) Oncolytic plasmid: a novel strategy for tumor immuno-gene therapy. Oncol Lett 3:387–390

    CAS  PubMed  Google Scholar 

  • Zhang Y, Luo CL, He BC, Zhang JM, Cheng G, Wu XH (2010) Exosomes derived from IL-12-anchored renal cancer cells increase induction of specific antitumor response in vitro: a novel vaccine for renal cell carcinoma. Int J Oncol 36:133–140

    PubMed  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Prof. Hideo Nariuchi for his kind and important advices. This work was supported by JSPS KAKENHI Grant Numbers 25350555 and 16K01394.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Koyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyama, Y., Ito, T., Hasegawa, A. et al. Exosomes derived from tumor cells genetically modified to express Mycobacterium tuberculosis antigen: a novel vaccine for cancer therapy. Biotechnol Lett 38, 1857–1866 (2016). https://doi.org/10.1007/s10529-016-2185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2185-1

Keywords

Navigation