Skip to main content

Advertisement

Log in

Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

The growth characteristics and intracellular hemin concentrations of Lactococcus lactis grown under different culture pH and aeration conditions were examined to investigate the effect of culture pH on the respiration efficiency of L. lactis NZ9000 (pZN8148).

Results

Cell biomass and biomass yield of L. lactis grown with 4 μg hemin/ml and O2 were higher than those without aeration when the culture pH was controlled at 5–6.5. The culture pH affected the respiratory efficiency in the following order of pH: 5 > 5.5 > 6 > 6.5; the lag phase increased as the culture pH decreased. Hemin accumulation was sensitive to culture pH. Among the four pH conditions, pH 5.5 was optimal for hemin accumulation in the cells. The highest intracellular hemin level in L. lactis resting cells incubated at different pH saline levels (5–6.5) was at pH 5.5.

Conclusion

The respiration efficiency of L. lactis under respiration-permissive conditions increases markedly as the culture pH decreases. These results may help develop high cell-density L. lactis cultures. Thus, this microorganism may be used for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bahey-El-Din M, Gahan CGM, Griffin BT (2010) Lactococcus lactis as a cell factory for delivery of therapeutic proteins. Curr Gene Ther 10:34–45

    Article  CAS  PubMed  Google Scholar 

  • Brooijmans RJW, Poolman B, Schuurman-Wolters GK, de Vos WM, Hugenholtz J (2007) Generation of a membrane potential by Lactococcus lactis through aerobic electron transport. J Bacteriol 189:5203–5209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaudu P, Vido K, Cesselin B, Kulakauskas S, Trembly J, Rezaiki L, Lamberet G, Sourice S, Duwat P, Gruss A (2002) Respiration capacity and consequences in Lactococcus lactis. Antonie Van Leeuwenhoek 82:263–269

    Article  CAS  PubMed  Google Scholar 

  • Honsa ES, Maresso AW (2011) Mechanisms of iron import in anthrax. Biometals 24:533–545

    Article  CAS  PubMed  Google Scholar 

  • Joubert L, Derré-Bobillot A, Gaudu P, Gruss A, Lechardeur D (2014) HrtBA and menaquinones control haem homeostasis in Lactococcus lactis. Mol Microbiol 93:823–833

    Article  CAS  PubMed  Google Scholar 

  • Lombardo ME, Araujo LS, Ciccarelli AB, Batlle A (2005) A spectrophotometric method for estimating hemin in biological systems. Anal Biochem 341:199–203

    Article  CAS  PubMed  Google Scholar 

  • Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, Joachmiak A, Missiakas DM, Schneewind O (2003) Passage of heme-iron across the envelope of Staphylococcus aureus. Science 7:906–909

    Article  Google Scholar 

  • Nagayasu M, Wardani AK, Nagahisa K, Shimizu H, Shioya S (2007) Analysis of hemin effect on lactate reduction in Lactococcus lactis. J Biosci Bioeng 103:529–534

    Article  CAS  PubMed  Google Scholar 

  • Nitzan Y, Laden H, Malik Z (1987) Growth-inhibitory effect of hemin on Staphylococci. Curr Microbiol 14:279–284

    Article  CAS  Google Scholar 

  • Pedersen MB, Iversen SL, Sorensen KI, Johansen E (2005) The long and winding road from the research laboratory to industrial applications of lactic acid bacteria. FEMS Microbiol Rev 29:611–624

    Article  CAS  PubMed  Google Scholar 

  • Pedersen MB, Garrigues C, Tuphile K, Brun C, Vido K, Bennedsen M, Møllgaard H, Gaudu P, Gruss A (2008) Impact of aeration and heme-Activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon. J Bacteriol 190:4903–4911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pontes DS, de Azevedo MSP, Chatel JM, Langella P, Azevedo V, Miyoshi A (2011) Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 79:165–175

    Article  CAS  PubMed  Google Scholar 

  • Reniere ML, Torres VJ, Skaar EP (2007) Intracellular metalloporphyrin metabolism in Staphylococcus aureus. Biometals 7:333–345

    Article  Google Scholar 

  • Sawai H, Yamanaka M, Sugimoto H, Shiro Y, Aono S (2012) Heme-responsive regulatory mechanism of HrtR responsible for transcriptional regulation of heme homeostasis. J Biol Chem 287:30755–30768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Sciences Foundation of China (Contract No. 31200034) and the Foundation of Human Resourance of Anhui Agricultural University. We thank Dr. Jeroen Hugenholtz for providing strain NZ9000 and plasmid pNZ8148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiyan Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Li, Y., Gao, X. et al. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH. Biotechnol Lett 38, 495–501 (2016). https://doi.org/10.1007/s10529-015-1999-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1999-6

Keywords

Navigation