Skip to main content

Advertisement

Log in

FRET-based genetically-encoded sensors for quantitative monitoring of metabolites

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ando T, Uchihashi T, Kodera N, Yamamoto D, Miyagi A, Taniguchi M, Yamashita H (2008) High-speed AFM and nano-visualization of biomolecular processes. Eur J Physiol 456:211–225

    Article  CAS  Google Scholar 

  • Arlt K, Brandt S, Kehr J (2001) Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection. J Chromatogr 926:319–325

    Article  CAS  Google Scholar 

  • Arrivault S, Guenther M, Florian A, Encke B, Feil R, Vosloh D, Lunn JE, Sulpice R, Fernie AR, Stitt M (2014) Dissecting the subcellular compartmentation of proteins and metabolites in Arabidopsis leaves using non-aqueous fractionation. Mol Cell Proteomics M114:038190

    Google Scholar 

  • Bogner M, Ludewig U (2007) Visualization of arginine influx into plant cells using a specific FRET-sensor. J Fluoresc 17:350–360

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA (2009) Cell–cell and intracellular lactate shuttles. J Physiol 587:5591–5600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Day RN (1998) Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. J Mol Endocrinol 12:1410–1419

    Article  CAS  Google Scholar 

  • dos Remedios CG, Miki M, Barden JA (1987) Fluorescence resonance energy transfer measurements of distances in actin and myosin. A critical evaluation. J Muscle Res Cell Motil 8:97–117

    Article  PubMed  Google Scholar 

  • Elangovan M, Wallrabe H, Chen Y, Day RN, Barroso M, Periasamy A (2003) Characterization of one-and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29:58–73

    Article  CAS  PubMed  Google Scholar 

  • Etzel MR (2004) Manufacture and use of dairy protein fractions. J Nutr 134:996S–1002S

    CAS  PubMed  Google Scholar 

  • Evanko DS, Haydon PG (2005) Elimination of environmental sensitivity in a cameleon FRET-based calcium sensor via replacement of the acceptor with Venus. Cell Calcium 37:341–348

    Article  CAS  PubMed  Google Scholar 

  • Ewald JC, Reich S, Baumann S, Frommer WB, Zamboni N (2011) Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations. PLoS One 6:e28245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fehr M, Frommer WB, Lalonde S (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. PNAS 99:9846–9851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fehr M, Lalonde S, Lager I, Wolff MW, Frommer WB (2003) In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278:19127–19133

    Article  CAS  PubMed  Google Scholar 

  • Felder CB, Graul RC, Lee AY, Merkle H-P, Sadee W (1999) The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS Pharmsci 1:7–26

    Article  PubMed Central  Google Scholar 

  • Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Bio 48:155–171

    Article  CAS  Google Scholar 

  • Förster T (1965) Delocalized excitation and excitation transfer, vol 3. Florida State University, New York

    Google Scholar 

  • Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  CAS  PubMed  Google Scholar 

  • Gruenwald K, Holland JT, Stromberg V, Ahmad A, Watcharakichkorn D, Okumoto S (2012) Visualization of glutamine transporter activities in living cells using genetically encoded glutamine sensors. PLoS One 7:e38591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gu H, Lalonde S, Okumoto S, Looger LL, Scharff-Poulsen AM, Grossman AR, Kossmann J, Jakobsen I, Frommer WB (2006) A novel analytical method for in vivo phosphate tracking. FEBS Lett 580:5885–5893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    Article  CAS  PubMed  Google Scholar 

  • Imamura H, Nhat KPH, Togawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji H (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. PNAS 106:15651–15656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  CAS  PubMed  Google Scholar 

  • Joseph RL, Lakowicz R (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum Publishers, New York, p 11

    Google Scholar 

  • Kaper T, Looger LL, Takanaga H, Platten M, Steinman L, Frommer WB (2007) Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol 5:e257

    Article  PubMed Central  PubMed  Google Scholar 

  • Karley AJ, Leigh RA, Sanders D (2000) Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends Plant Sci 5:465–470

    Article  CAS  PubMed  Google Scholar 

  • Köckenberger W (2001) Nuclear magnetic resonance micro-imaging in the investigation of plant cell metabolism. J Exp Bot 52:641–652

    Article  PubMed  Google Scholar 

  • Lager I, Fehr M, Frommer WB, Lalonde S (2003) Development of a fluorescent nanosensor for ribose. FEBS Lett 553:85–89

    Article  CAS  PubMed  Google Scholar 

  • Lager I, Looger LL, Hilpert M, Lalonde S, Frommer WB (2006) Conversion of a putative Agrobacterium sugar-binding protein into a FRET sensor with high selectivity for sucrose. J Biol Chem 281:30875–30883

    Article  CAS  PubMed  Google Scholar 

  • Lalonde S, Ehrhardt DW, Frommer WB (2005) Shining light on signaling and metabolic networks by genetically encoded biosensors. Curr Opin Plant Biol 8:574–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lanza IR, Zhang S, Ward LE, Karakelides H, Raftery D, Nair KS (2010) Quantitative metabolomics by 1H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS One 5:e10538

    Article  PubMed Central  PubMed  Google Scholar 

  • Leidreiter K, Heineke D, Heldt HW, Müller-Röber B, Sonnewald U, Willmitzer L (1995) Leaf-specific antisense inhibition of starch biosynthesis in transgenic potato plants leads to an increase in photoassimilate export from source leaves during the light period. Plant Cell Physiol 36:615–624

    CAS  Google Scholar 

  • Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Hermann Muehling K (2001) Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant 111:457–465

    Article  CAS  PubMed  Google Scholar 

  • Looger LL, Lalonde S, Frommer WB (2005) Genetically encoded FRET sensors for visualizing metabolites with subcellular resolution in living cells. Plant Physiol 138:555–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu L, Lu H, Skolnick J (2002) MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins: structure. Funct Bioinform 49:350–364

    Article  CAS  Google Scholar 

  • Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111–129

    Article  CAS  PubMed  Google Scholar 

  • Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater 5:581–589

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+; based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  PubMed  Google Scholar 

  • Mohsin M, Ahmad A (2014) Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells. Biosens Bioelectron 59:358–364

    Article  CAS  PubMed  Google Scholar 

  • Mohsin M, Abdin MZ, Nischal L, Kardam H, Ahmad A (2013) Genetically encoded FRET-based nanosensor for in vivo measurement of leucine. Biosens Bioelectron 50:72–77

    Article  CAS  PubMed  Google Scholar 

  • Myers R (2001) The biological application of small animal PET imaging. Nucl Med Biol 28:585–593

    Article  CAS  PubMed  Google Scholar 

  • Okumoto S (2010) Imaging approach for monitoring cellular metabolites and ions using genetically encoded biosensors. Curr Opin Biotechnol 21:45–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. PNAS 102:8740–8745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pakhomov AA, Martynov VI (2008) GFP family: structural insights into spectral tuning. Chem Biol 15:755–764

    Article  CAS  PubMed  Google Scholar 

  • Qavi AJ, Washburn AL, Byeon J-Y, Bailey RC (2009) Label-free technologies for quantitative multiparameter biological analysis. Anal Bioanal Chem 394:121–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quiocho FA, Ledvina PS (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20:17–25

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe RG, Shachar-Hill Y (2001) Probing plant metabolism with NMR. Annu Rev Plant Biol 52:499–526

    Article  CAS  Google Scholar 

  • Salonikidis PS, Zeug A, Kobe F, Ponimaskin E, Richter DW (2008) Quantitative measurement of cAMP concentration using an exchange protein directly activated by a cAMP-based FRET-sensor. Biophys J 95:5412–5423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • San Martίn A, Sn Ceballo, In Ruminot, Lerchundi R, Frommer WB, Barros LF (2013) A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS One 8:e57712

    Article  Google Scholar 

  • Tam R, Saier MH (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320–346

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  • Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41:633–646

    Article  CAS  PubMed  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M (2009) Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Methods 6:737–740

    Article  CAS  PubMed  Google Scholar 

  • Vogel SS, Thaler C, Koushik SV (2006) Fanciful fret. Sci Signal 2006:re2

    Article  Google Scholar 

  • Yu X, White LT, Doumen C, Damico LA, LaNoue KF, Alpert NM, Lewandowski ED (1995) Kinetic analysis of dynamic 13C NMR spectra: metabolic flux, regulation, and compartmentation in hearts. Biophys J 69:2090–2102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nature Rev Mol Cell Biol 3:906–918

    Article  CAS  Google Scholar 

  • Zimmer M (2002) Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev 102:759–782

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

First author (MM) acknowledges the University Grants Commission, New Delhi, for providing the financial support in the form of UGC research start up grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Mohsin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsin, M., Ahmad, A. & Iqbal, M. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites. Biotechnol Lett 37, 1919–1928 (2015). https://doi.org/10.1007/s10529-015-1873-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1873-6

Keywords

Navigation