Skip to main content
Log in

Moringa oleifera and Its Biochemical Compounds: Potential Multi-targeted Therapeutic Agents Against COVID-19 and Associated Cancer Progression

  • Review
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The Coronavirus disease-2019 (COVID-19) pandemic is a global concern, with updated pharmacological therapeutic strategies needed. Cancer patients have been found to be more susceptible to severe COVID-19 and death, and COVID-19 can also lead to cancer progression. Traditional medicinal plants have long been used as anti-infection and anti-inflammatory agents, and Moringa oleifera (M. oleifera) is one such plant containing natural products such as kaempferol, quercetin, and hesperetin, which can reduce inflammatory responses and complications associated with viral infections and multiple cancers. This review article explores the cellular and molecular mechanisms of action of M. oleifera as an anti-COVID-19 and anti-inflammatory agent, and its potential role in reducing the risk of cancer progression in cancer patients with COVID-19. The article discusses the ability of M. oleifera to modulate NF-κB, MAPK, mTOR, NLRP3 inflammasome, and other inflammatory pathways, as well as the polyphenols and flavonoids like quercetin and kaempferol, that contribute to its anti-inflammatory properties. Overall, this review highlights the potential therapeutic benefits of M. oleifera in addressing COVID-19 and associated cancer progression. However, further investigations are necessary to fully understand the cellular and molecular mechanisms of action of M. oleifera and its natural products as anti-inflammatory, anti-COVID-19, and anti-cancer strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Abbreviations

M. oleifera :

Moringa oleifera

NSP:

Non-structural protein

Mpro:

Main protease

TNF-α:

Tumor necrosis factor-alpha

IL:

Interleukin

NF-κB:

Nuclear factor kappa B

ROS:

Reactive oxygen species

NLRP3:

NOD-like receptors (NLR) family pyrin domain-containing 3

MAPK:

Mitogen-activated protein kinase

PI3K:

Phosphoinositide 3-kinases

mTOR:

Mammalian target of rapamycin

JAK/STAT:

Janus kinas/signal transducer and activator of transcription

References

  • Abdull Razis AF, Ibrahim MD, Kntayya SB (2014) Health benefits of Moringa oleifera. Asian Pac J Cancer Prev 15(20):8571–8576

    Article  PubMed  Google Scholar 

  • Adedapo AA, Falayi OO, Oyagbemi AA (2015) Evaluation of the analgesic, anti-inflammatory, anti-oxidant, phytochemical and toxicological properties of the methanolic leaf extract of commercially processed Moringa oleifera in some laboratory animals. J Basic Clin Physiol Pharmacol 26(5):491–499

    Article  CAS  PubMed  Google Scholar 

  • Ahmadian R, Rahimi R, Bahramsoltani R (2020) Kaempferol: an encouraging flavonoid for COVID-19. Bol Latinoam Caribe Plant Med Aromát 19(5):492–494

    Article  CAS  Google Scholar 

  • Ahn H, Lee G-S (2017) Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation. Phytomedicine 24:77–86

    Article  CAS  PubMed  Google Scholar 

  • Akabari AH, Shah DP, Patel SP, Patel SK (2022) Ethnopharmacology, phytochemistry, pharmacology and toxicology of Moringaceae family: a review. Syst Rev Pharm 13(11)

  • Alhakmani F, Kumar S, Khan SA (2013) Estimation of total phenolic content, in vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera. Asian Pac J Trop Biomed 3(8):623–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arifan F, Broto R, Sapatra E, Pujiastuti A (2021) Utilization of Moringa oleifera leaves for making hand sanitizers to prevent the spread of COVID-19 virus. IOP Conf Ser Earth Environ Sci 623:012015

    Article  Google Scholar 

  • Avilés-Gaxiola S, León-Félix J, Jiménez-Nevárez YB, Angulo-Escalante MA, Ramos-Payán R, Colado-Velázquez J III, Heredia JB (2021) Antioxidant and anti-inflammatory properties of novel peptides from Moringa oleifera Lam. leaves. S Afr J Bot 141:466–473

    Article  Google Scholar 

  • Azlan UK, Khairul Annuar NA, Mediani A, Aizat WM, Damanhuri HA, Tong X et al (2023) An insight into the neuroprotective and anti-neuroinflammatory effects and mechanisms of Moringa oleifera. Front Pharmacol 13:1035220

    Article  PubMed  PubMed Central  Google Scholar 

  • Azizi R, Mobarakeh MD, Goujani R, Nabi-Afjadi M, Rizi SM, Maghsoudi A (2023) A study on the effect of aspirin on clinical symptoms, laboratory indices, and outcomes in patients with COVID-19. J Nephropharmacol. https://doi.org/10.34172/npj.2023.10506

    Article  Google Scholar 

  • Bakhtiyari M, Haji Aghasi A, Banihashemi S, Abbassioun A, Tavakol C, Zalpoor H (2023) CD147 and cyclophilin A: a promising potential targeted therapy for COVID-19 and associated cancer progression and chemo-resistance. Infect Agents Cancer 18(1):1–5

    Article  Google Scholar 

  • Barbosa AM, Martel F (2020) Targeting glucose transporters for breast cancer therapy: the effect of natural and synthetic compounds. Cancers 12(1):154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkovich L, Earon G, Ron I, Rimmon A, Vexler A, Lev-Ari S (2013) Moringa oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC Complement Altern Med 13:1–7

    Article  Google Scholar 

  • Biswas SK, Chowdhury A, Das J, Roy A, Hosen SZ (2012) Pharmacological potentials of Moringa oleifera Lam.: a review. Int J Pharm Sci Res 3(2):305

    Google Scholar 

  • Brown A, Emrani J, Mowa CN, Ahmed M (2020) Moringa oleifera and vesicular stomatitis virus: a combination approach for the treatment of cervical cancers. S Afr J Bot 129:388–396

    Article  CAS  Google Scholar 

  • Chakraborty A, Devi RK, Rita S, Sharatchandra K, Singh TI (2004) Preliminary studies on antiinflammatory and analgesic activities of Spilanthes acmella in experimental animal models. Indian J Pharmacol 36(3):148

    Google Scholar 

  • Cheenpracha S, Park E-J, Yoshida WY, Barit C, Wall M, Pezzuto JM, Chang LC (2010) Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits. Bioorg Med Chem 18(17):6598–6602

    Article  CAS  PubMed  Google Scholar 

  • Chen L, He Y, Zhu J, Zhao S, Qi S, Chen X et al (2023) The roles and mechanism of m6A RNA methylation regulators in cancer immunity. Biomed Pharmacother 163:114839

    Article  CAS  PubMed  Google Scholar 

  • Chin HK, Horng CT, Liu YS, Lu CC, Su CY, Chen PS et al (2018) Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells. Oncol Rep 39(5):2351–2357

    CAS  PubMed  Google Scholar 

  • Choe J-Y, Kim S-K (2017) Quercetin and ascorbic acid suppress fructose-induced NLRP3 inflammasome activation by blocking intracellular shuttling of TXNIP in human macrophage cell lines. Inflammation 40:980–994

    Article  CAS  PubMed  Google Scholar 

  • Chukwuebuka E (2015) Moringa oleifera “the mother’s best friend.” Int J Nutr Food Sci 4(6):624–630

    Article  CAS  Google Scholar 

  • Coppin JP, Xu Y, Chen H, Pan M-H, Ho C-T, Juliani R et al (2013) Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J Funct Foods 5(4):1892–1899

    Article  CAS  Google Scholar 

  • Dang Q, Song W, Xu D, Ma Y, Li F, Zeng J et al (2015) Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis. Mol Carcinog 54(9):831–840

    Article  CAS  PubMed  Google Scholar 

  • Das S, Sarmah S, Lyndem S, Singha Roy A (2021) An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn 39(9):3347–3357

    CAS  PubMed  Google Scholar 

  • de Siqueira Patriota LL, de Ramos DBM, Dos Santos ACLA, Silva YA, Silva EMG, Torres DJL et al (2020) Antitumor activity of Moringa oleifera (drumstick tree) flower trypsin inhibitor (MoFTI) in sarcoma 180-bearing mice. Food Chem Toxicol 145:111691

    Article  Google Scholar 

  • Do BH, Nguyen TPT, Ho NQC, Le TL, Hoang NS, Doan CC (2020) Mitochondria-mediated Caspase-dependent and Caspase-independent apoptosis induced by aqueous extract from Moringa oleifera leaves in human melanoma cells. Mol Biol Rep 47(5):3675–3689

    Article  PubMed  Google Scholar 

  • Ebrahimi K, Shir Ovand S, Mohammedi AAN, Nabi-Afjadi M, Zalpoor H, Bahreini F (2022) Biosynthesis of copper nanoparticles using aqueous thymus daenensis (celak) flora and investigation of its antifungal activity. J Med Microbiol Infect Dis 10(3):98–103

    CAS  Google Scholar 

  • Emongor V (2009) Moringa (Moringa oleifera Lam.): a review. In: Paper presented at the I all Africa horticultural congress, 2009, p 911

  • Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili S-M, Bahreini E (2020) A comprehensive review of COVID-19 characteristics. Biol Proced Online 22(1):1–10

    Article  Google Scholar 

  • Esmaily M, Masjedi A, Hallaj S, Afjadi MN, Malakotikhah F, Ghani S et al (2020) Blockade of CTLA-4 increases anti-tumor response inducing potential of dendritic cell vaccine. J Control Release 326:63–74

    Article  CAS  PubMed  Google Scholar 

  • Fahmideh H, Shapourian H, Moltafeti R, Tavakol C, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M (2022) The role of natural products as inhibitors of JAK/STAT signaling pathways in glioblastoma treatment. Oxid Med Cell Longev 2022:7838583

    Article  PubMed  PubMed Central  Google Scholar 

  • Fajri M (2021) The potential of Moringa oleifera as immune booster against COVID 19. IOP Conf Ser Earth Environ Sci 807:022008

    Article  Google Scholar 

  • Faramarzian M, Bahramikia S, Nabi-Afjadi M (2022) Evaluation of the anti-amyloidogenic and fibril-destabilizing effects of Salvia officinalis flower extract against hen’s egg white lysozyme: an in vitro study. Iran J Sci Technol Trans A 46(5):1349–1358

    Article  Google Scholar 

  • Fatmawati A, Sucianingsih D, Riswan R, Emelda E, Kusumawardhani N, Fauzi R et al (2022) Formulation, evaluation of physical properties, and in vitro antioxidant activity test of Moringa leaf (Moringa oleifera L.) ethanolic extract capsules. Open Access Maced J Med Sci 10(T8):108–113

    Article  Google Scholar 

  • Ferreira PMP, Farias DF, de Oliveira JTA, de Carvalho AFU (2008) Moringa oleifera: bioactive compounds and nutritional potential. Rev Nutr 21:431–437

    Article  CAS  Google Scholar 

  • Flores-Félix JD, Gonçalves AC, Alves G, Silva LR (2021) Consumption of phenolic-rich food and dietary supplements as a key tool in SARS-CoV-19 infection. Foods 10(9):2084

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman TL, Swartz TH (2020) Targeting the NLRP3 inflammasome in severe COVID-19. Front Immunol 11:1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gondo HK (2021) Moringa leaf powder (Moringa oleifera) decrease of inflammation plasma cytokine of pregnant rats with diabetes mellitus. Open Access Maced J Med Sci 9(A):1043–1046

    Article  Google Scholar 

  • Gopalakrishnan L, Doriya K, Kumar DS (2016) Moringa oleifera: a review on nutritive importance and its medicinal application. Food Sci Hum Wellness 5(2):49–56

    Article  Google Scholar 

  • Hamza M, Ali A, Khan S, Ahmed S, Attique Z, Ur Rehman S et al (2021) nCOV-19 peptides mass fingerprinting identification, binding, and blocking of inhibitors flavonoids and anthraquinone of Moringa oleifera and hydroxychloroquine. J Biomol Struct Dyn 39(11):4089–4099

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Lu XY, Shi JJ, Liu XQ, Chen QB, Wang Q et al (2020) Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice. J Cell Mol Med 24(6):3449–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang A, Zhou W (2023) Mn-based cGAS-STING activation for tumor therapy. Chin J Cancer Res 35(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, Gui M, An H, Shen J, Ye F, Ni Z et al (2023) Babao Dan alleviates gut immune and microbiota disorders while impacting the TLR4/MyD88/NF-кB pathway to attenuate 5-Fluorouracil-induced intestinal injury. Biomed Pharmacother 166:115387

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU et al (2019) Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review. Phytother Res 33(2):263–275

    Article  PubMed  Google Scholar 

  • Joshi N, Hajizadeh F, Dezfouli EA, Zekiy AO, Afjadi MN, Mousavi SM et al (2021) Silencing STAT3 enhances sensitivity of cancer cells to doxorubicin and inhibits tumor progression. Life Sci 275:119369

    Article  CAS  PubMed  Google Scholar 

  • Kakavandi S, Hajikhani B, Azizi P, Aziziyan F, Nabi-Afjadi M, Ramezani Farani M, Zalpoor H, Azarian M, Iravani Saadi M, Gharesi-Fard B, Terpos E, Zare I, Motamedifar M (2023a) COVID-19 in patients with anemia and haematological malignancies: risk factors, clinical guidelines, and emerging therapeutic approaches. Cell Commun Signal 22:126

    Article  Google Scholar 

  • Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A et al (2023b) Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 21(1):110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karami Fath M, Azargoonjahromi A, Kiani A, Jalalifar F, Osati P, Akbari Oryani M et al (2022a) The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell Mol Biol Lett 27(1):1–25

    Article  Google Scholar 

  • Karami Fath M, Azargoonjahromi A, Soofi A, Almasi F, Hosseinzadeh S, Khalili S et al (2022b) Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int 22(1):1–23

    Article  Google Scholar 

  • Karami Fath M, Babakhaniyan K, Zokaei M, Yaghoubian A, Akbari S, Khorsandi M et al (2022c) Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell Mol Biol Lett 27(1):33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpisheh V, Afjadi JF, Afjadi MN, Haeri MS, Sough TSA, Asl SH et al (2021) Inhibition of HIF-1α/EP4 axis by hyaluronate-trimethyl chitosan-SPION nanoparticles markedly suppresses the growth and development of cancer cells. Int J Biol Macromol 167:1006–1019

    Article  CAS  PubMed  Google Scholar 

  • Kashyap P, Kumar S, Riar CS, Jindal N, Baniwal P, Guiné RP et al (2022) Recent advances in Drumstick (Moringa oleifera) leaves bioactive compounds: composition, health benefits, bioaccessibility, and dietary applications. Antioxidants 11(2):402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khesht AMS, Karpisheh V, Saeed BQ, Zekiy AO, Yapanto LM, Afjadi MN et al (2021) Different T cell related immunological profiles in COVID-19 patients compared to healthy controls. Int Immunopharmacol 97:107828

    Article  Google Scholar 

  • Kim GT, Lee SH, Kim YM (2013) Quercetin regulates sestrin 2-AMPK-mTOR signaling pathway and induces apoptosis via increased intracellular ROS in HCT116 colon cancer cells. J Cancer Prev 18(3):264

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinase J (2014) Moringa tea blocks acute lung inflammation induced by swine confinement dust through a mechanism involving TNF-α expression, c-Jun N-terminal kinase activation and neutrophil regulation. Am J Immunol 10(2):73–87

    Article  Google Scholar 

  • Li L, Wang S, Zhou W (2022) Balance cell apoptosis and pyroptosis of caspase-3-activating chemotherapy for better antitumor therapy. Cancers 15(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang L, Wang C, Li S, Chu X, Sun K (2019) Nutritional compositions of Indian Moringa oleifera seed and antioxidant activity of its polypeptides. Food Sci Nutr 7(5):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim H, Min DS, Park H, Kim HP (2018) Flavonoids interfere with NLRP3 inflammasome activation. Toxicol Appl Pharmacol 355:93–102

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Luo X, Tsun A, Li Z, Li D, Li B (2015) Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation. Int Immunopharmacol 28(2):859–865

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Liu J, Huang Q, Liu S, Jiang Y (2022) Moringa oleifera: a systematic review of its botany, traditional uses, phytochemistry, pharmacology and toxicity. J Pharm Pharmacol 74(3):296–320

    Article  PubMed  Google Scholar 

  • Madi N, Dany M, Abdoun S, Usta J (2016) Moringa oleifera’s nutritious aqueous leaf extract has anticancerous effects by compromising mitochondrial viability in an ROS-dependent manner. J Am Coll Nutr 35(7):604–613

    Article  CAS  PubMed  Google Scholar 

  • Mangiavacchi F, Botwina P, Menichetti E, Bagnoli L, Rosati O, Marini F et al (2021) Seleno-functionalization of quercetin improves the non-covalent inhibition of Mpro and its antiviral activity in cells against SARS-CoV-2. Int J Mol Sci 22(13):7048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour M, Mohamed MF, Elhalwagi A, El-Itriby HA, Shawki HH, Abdelhamid IA (2019) Moringa peregrina leaves extracts induce apoptosis and cell cycle arrest of hepatocellular carcinoma. BioMed Res Int. https://doi.org/10.1155/2019/2698570

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathpal S, Sharma P, Joshi T, Joshi T, Pande V, Chandra S (2022) Screening of potential bio-molecules from Moringa oleifera against SARS-CoV-2 main protease using computational approaches. J Biomol Struct Dyn 40(20):9885–9896

    Article  CAS  PubMed  Google Scholar 

  • Meireles D, Gomes J, Lopes L, Hinzmann M, Machado J (2020) A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: integrative approach on conventional and traditional Asian medicine. Adv Tradit Med 20(4):495–515

    Article  Google Scholar 

  • Mondal S, Chakraborty I, Pramanik M, Rout D, Islam SS (2004) Structural studies of an immunoenhancing polysaccharide isolated from mature pods (fruits) of Moringa oleifera (Sajina). Med Chem Res 13:390–400

    Article  CAS  Google Scholar 

  • Muhammad S, Hassan SH, Al-Sehemi AG, Shakir HA, Khan M, Irfan M, Iqbal J (2021) Exploring the new potential antiviral constituents of Moringa oleifera for SARS-CoV-2 pathogenesis: an in silico molecular docking and dynamic studies. Chem Phys Lett 767:138379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabi-Afjadi M, Karami H, Goudarzi K, Alipourfard I, Bahreini E (2021) The effect of vitamin D, magnesium and zinc supplements on interferon signaling pathways and their relationship to control SARS-CoV-2 infection. Clin Mol Allergy 19(1):1–10

    Article  Google Scholar 

  • Nabi-Afjadi M, Heydari M, Zalpoor H, Arman I, Sadoughi A, Sahami P, Aghazadeh S (2022) Lectins and lectibodies: potential promising antiviral agents. Cell Mol Biol Lett 27(1):37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabi-Afjadi M, Mohebi F, Zalpoor H, Aziziyan F, Akbari A, Moradi-Sardareh H et al (2023) A cellular and molecular biology-based update for ivermectin against COVID-19: is it effective or non-effective? Inflammopharmacology 31(1):1–15

    Article  Google Scholar 

  • Naik SR, Bharadwaj P, Dingelstad N, Kalyaanamoorthy S, Mandal SC, Ganesan A et al (2022) Structure-based virtual screening, molecular dynamics and binding affinity calculations of some potential phytocompounds against SARS-CoV-2. J Biomol Struct Dyn 40(15):6921–6938

    Article  CAS  PubMed  Google Scholar 

  • Ndiaye M, Dieye A, Mariko F, Tall A, Faye B (2002) Contribution to the study of the anti-inflammatory activity of Moringa oleifera (Moringaceae). Dakar Med 47(2):210–212

    CAS  PubMed  Google Scholar 

  • Nguyen TTH, Woo H-J, Kang H-K, Nguyen VD, Kim Y-M, Kim D-W et al (2012) Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett 34:831–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norouzi A, Liaghat M, Bakhtiyari M, Varnosfaderani SMN, Zalpoor H, Nabi-Afjadi M, Molania T (2023) The potential role of COVID-19 in progression, chemo-resistance, and tumor recurrence of oral squamous cell carcinoma (OSCC). Oral Oncol 144:106483

    Article  CAS  PubMed  Google Scholar 

  • Nworu C, Okoye E, Ezeifeka G, Esimone C (2013) Extracts of Moringa oleifera Lam. showing inhibitory activity against early steps in the infectivity of HIV-1 lentiviral particles in a viral vector-based screening. Afr J Biotechnol 12(30):4866–4873

    Article  Google Scholar 

  • Omodanisi EI, Aboua YG, Oguntibeju OO (2017) Assessment of the anti-hyperglycaemic, anti-inflammatory and antioxidant activities of the methanol extract of Moringa oleifera in diabetes-induced nephrotoxic male Wistar rats. Molecules 22(4):439

    Article  PubMed  PubMed Central  Google Scholar 

  • Padayachee B, Baijnath H (2020) An updated comprehensive review of the medicinal, phytochemical and pharmacological properties of Moringa oleifera. S Afr J Bot 129:304–316

    Article  CAS  Google Scholar 

  • Pangastuti A, Amin IF, Amin AZ, Amin M (2016) Natural bioactive compound from Moringa oleifera against cancer based on in silico screening. J Teknol 78(5)

  • Parvathy M, Umamaheshwari A (2007) Cytotoxic effect of Moringa oleifera leaf extracts on human multiple myeloma cell lines. Trends Med Res 2(1):44–50

    Article  Google Scholar 

  • Payandeh Z, Mohammadkhani N, Nabi Afjadi M, Khalili S, Rajabibazl M, Houjaghani Z, Dadkhah M (2021) The immunology of SARS-CoV-2 infection, the potential antibody based treatments and vaccination strategies. Expert Rev Anti-Infect Ther 19(7):899–910

    Article  CAS  PubMed  Google Scholar 

  • Praengam K, Muangnoi C, Dawilai S, Awatchanawong M, Tuntipopipat S (2015) Digested Moringa oleifera boiled pod exhibits anti-inflammatory activity in Caco-2 cells. J Herbs Spices Med Plants 21(2):148–160

    Article  CAS  Google Scholar 

  • Qiu L, Yu R, Hu F, Zhou H, Hu H (2023) How can China’s medical manufacturing listed firms improve their technological innovation efficiency? An analysis based on a three-stage DEA model and corporate governance configurations. Technol Forecast Soc Change 194:122684

    Article  Google Scholar 

  • Ramaiah MJ (2020) mTOR inhibition and p53 activation, microRNAs: the possible therapy against pandemic COVID-19. Gene Rep 20:100765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramamurthy S, Varghese S, Sudarsan S, Muruganandhan J, Mushtaq S, Patil PB et al (2022) Moringa oleifera: antioxidant, anticancer, anti-inflammatory, and related properties of extracts in cell lines: a review of medicinal effects, phytochemistry, and applications. J Contemp Dent Pract 22(12):1483–1492

    Article  Google Scholar 

  • Rathore J, Das CR (2022) Moringa oleifera: a review of phytochemicals constituents and medicinal properties as a future source of new drugs. Int J Health Sci. https://doi.org/10.53730/ijhs.v6nS1.6471

    Article  Google Scholar 

  • Refolo MG, D’Alessandro R, Malerba N, Laezza C, Bifulco M, Messa C et al (2015) Anti proliferative and pro apoptotic effects of flavonoid quercetin are mediated by CB1 receptor in human colon cancer cell lines. J Cell Physiol 230(12):2973–2980

    Article  CAS  PubMed  Google Scholar 

  • Rocha-Filho CA, Albuquerque LP, Silva LR, Silva PC, Coelho LC, Navarro DM et al (2015) Assessment of toxicity of Moringa oleifera flower extract to Biomphalaria glabrata, Schistosoma mansoni and Artemia salina. Chemosphere 132:188–192

    Article  CAS  PubMed  Google Scholar 

  • Rolim LA, Macêdo MF, Sisenando HA, Napoleão TH, Felzenszwalb I, Aiub CA et al (2011) Genotoxicity evaluation of Moringa oleifera seed extract and lectin. J Food Sci 76(2):T53–T58

    Article  CAS  PubMed  Google Scholar 

  • Saeedi-Boroujeni A, Mahmoudian-Sani M-R (2021) Anti-inflammatory potential of Quercetin in COVID-19 treatment. J Inflamm 18:1–9

    Article  Google Scholar 

  • Safizadeh F, Rastegary M, Nabi AM, Khonakdar TA, Zare Z, Zarpour S, Mohammadi TF (2020) Effects of pomegranate juice with and without aerobic training on glycemic control and lipid profile in women with type 2 diabetes. Arch Med Lab Sci 6:1–6

    Google Scholar 

  • Sen D, Bhaumik S, Debnath P, Debnath S (2022) Potentiality of Moringa oleifera against SARS-CoV-2: identified by a rational computer aided drug design method. J Biomol Struct Dyn 40(16):7517–7534

    Article  CAS  PubMed  Google Scholar 

  • Serebrovska ZO, Chong EY, Serebrovska TV, Tumanovska LV, Xi L (2020) Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin 41(12):1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Shaji D, Yamamoto S, Saito R, Suzuki R, Nakamura S, Kurita N (2021) Proposal of novel natural inhibitors of severe acute respiratory syndrome coronavirus 2 main protease: molecular docking and ab initio fragment molecular orbital calculations. Biophys Chem 275:106608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinwari S, Ahmad M, Luo Y, Zaman W (2017) Quantitative analyses of medicinal plants consumption among the inhabitants of Shangla-Kohistan areas in Northern-Pakistan. Pak J Bot 49(2):725–734

    Google Scholar 

  • Shukla S, Mathur R, Prakash AO (1988) Antifertility profile of the aqueous extract of Moringa oleifera roots. J Ethnopharmacol 22(1):51–62

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui S, Upadhyay S, Ahmad R, Barkat MA, Jamal A, Alothaim AS et al (2022) Interaction of bioactive compounds of Moringa oleifera leaves with SARS-CoV-2 proteins to combat COVID-19 pathogenesis: a phytochemical and in silico analysis. Appl Biochem Biotechnol 194(12):5918–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudha P, Asdaq S, Dhamingi SS, Chandrakala GK (2010) Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in animals. Indian J Physiol Pharmacol 54(2):133–140

    CAS  PubMed  Google Scholar 

  • Tegegne AA, Mulugeta A, Genetu B, Endale A, Elias A (2022) Perception towards COVID-19 related symptoms and traditional medicine used for their management among patients and their attendants in Ethiopian comprehensive specialized hospitals: a cross-sectional study. Infect Drug Resist 15:5023–5034

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiloke C, Anand K, Gengan RM, Chuturgoon AA (2018) Moringa oleifera and their phytonanoparticles: potential antiproliferative agents against cancer. Biomed Pharmacother 108:457–466

    Article  CAS  PubMed  Google Scholar 

  • Tragulpakseerojn J, Yamaguchi N, Pamonsinlapatham P, Wetwitayaklung P, Yoneyama T, Ishikawa N et al (2017) Anti-proliferative effect of Moringa oleifera Lam (Moringaceae) leaf extract on human colon cancer HCT116 cell line. Trop J Pharm Res 16(2):371–378

    Article  CAS  Google Scholar 

  • Vergara-Jimenez M, Almatrafi MM, Fernandez ML (2017) Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants 6(4):91

    Article  PubMed  PubMed Central  Google Scholar 

  • Vijayarajan M, Pandian MR (2016) Cytotoxicity of methanol and acetone root bark extracts of Moringa concanensis against A549, Hep-G2 and HT-29 cell lines. J Acad Ind Res 5:45–49

    CAS  Google Scholar 

  • Vongsak B, Sithisarn P, Mangmool S, Thongpraditchote S, Wongkrajang Y, Gritsanapan W (2013) Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind Crops Prod 44:566–571

    Article  CAS  Google Scholar 

  • Wang X, Yang Y, An Y, Fang G (2019) The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed Pharmacother 117:109086

    Article  CAS  PubMed  Google Scholar 

  • Waterman C, Cheng DM, Rojas-Silva P, Poulev A, Dreifus J, Lila MA, Raskin I (2014) Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry 103:114–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei S, Sun T, Du J, Zhang B, Xiang D, Li W (2018) Xanthohumol, a prenylated flavonoid from Hops, exerts anticancer effects against gastric cancer in vitro. Oncol Rep 40(6):3213–3222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu P, Meng X, Zheng H, Zeng Q, Chen T, Wang W et al (2018) Kaempferol attenuates ROS-induced hemolysis and the molecular mechanism of its induction of apoptosis on bladder cancer. Molecules 23(10):2592

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang J, Mlambo R, Shaw I, Seid Y, Shah H, He Y et al (2023) Cryopreservation of bioflavonoid-rich plant sources and bioflavonoid-microcapsules: emerging technologies for preserving bioactivity and enhancing nutraceutical applications. Front Nutr 10:1232129

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y-B, Chen G-L, Guo M-Q (2019) Antioxidant and anti-inflammatory activities of the crude extracts of Moringa oleifera from Kenya and their correlations with flavonoids. Antioxidants 8(8):296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi F, Takata M, Kamitori K, Nonaka M, Dong Y, Sui L, Tokuda M (2008) Rare sugar d-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1. Int J Oncol 32(2):377–385

    CAS  PubMed  Google Scholar 

  • Yan J, Liu D, Wang J, You W, Yang W, Yan S, He W (2024) Rewiring chaperone-mediated autophagy in cancer by a prion-like chemical inducer of proximity to counteract adaptive immune resistance. Drug Resist Updates 73:101037

    Article  CAS  Google Scholar 

  • Zalpoor H, Akbari A, Nabi-Afjadi M (2022a) Ephrin (Eph) receptor and downstream signaling pathways: a promising potential targeted therapy for COVID-19 and associated cancers and diseases. Hum Cell 35(3):952–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalpoor H, Akbari A, Nabi-Afjadi M, Forghaniesfidvajani R, Tavakol C, Barzegar Z et al (2022b) Hypoxia-inducible factor 1 alpha (HIF-1α) stimulated and P2X7 receptor activated by COVID-19, as a potential therapeutic target and risk factor for epilepsy. Hum Cell 35(5):1338–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalpoor H, Akbari A, Nayerain Jazi N, Liaghat M, Bakhtiyari M (2022c) Possible role of autophagy induced by COVID-19 in cancer progression, chemo-resistance, and tumor recurrence. Infect Agents Cancer 17(1):38

    Article  CAS  Google Scholar 

  • Zalpoor H, Aziziyan F, Liaghat M, Bakhtiyari M, Akbari A, Nabi-Afjadi M et al (2022d) The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors. Cell Commun Signal 20(1):186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalpoor H, Bakhtiyari M, Liaghat M, Nabi-Afjadi M, Ganjalikhani-Hakemi M (2022e) Quercetin potential effects against SARS-CoV-2 infection and COVID-19-associated cancer progression by inhibiting mTOR and hypoxia-inducible factor-1α (HIF-1α). Phytother Res 36(7):2679–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalpoor H, Bakhtiyari M, Shapourian H, Rostampour P, Tavakol C, Nabi-Afjadi M (2022f) Hesperetin as an anti-SARS-CoV-2 agent can inhibit COVID-19-associated cancer progression by suppressing intracellular signaling pathways. Inflammopharmacology 30(5):1533–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalpoor H, Nabi-Afjadi M, Forghaniesfidvajani R, Tavakol C, Farahighasreaboonasr F, Pakizeh F et al (2022g) Quercetin as a JAK-STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases. Cell Mol Biol Lett 27(1):60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalpoor H, Rezaei M, Yahyazadeh S, Ganjalikhani-Hakemi M (2022h) Flt3-ITD mutated acute myeloid leukemia patients and COVID-19: potential roles of autophagy and HIF-1α in leukemia progression and mortality. Hum Cell 35(4):1304–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalpoor H, Shapourian H, Akbari A, Shahveh S, Haghshenas L (2022i) Increased neuropilin-1 expression by COVID-19: a possible cause of long-term neurological complications and progression of primary brain tumors. Hum Cell 35(4):1301–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalpoor H, Akbari A, Nabi-Afjadi M, Norouzi A, Seif F, Pornour M (2023a) Purinergic P2X7 receptor as a potential targeted therapy for COVID-19-associated lung cancer progression. J Cell Signal. https://doi.org/10.33696/Signaling.4.087

    Article  Google Scholar 

  • Zalpoor H, Liaghat M, Bakhtiyari M, Shapourian H, Akbari A, Shahveh S et al (2023b) Kaempferol’s potential effects against SARS-CoV-2 and COVID-19-associated cancer progression and chemo-resistance. Phytother Res 37(5):1731–1739

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Hu M, Jin Y, Chen F, Wang X, Wang B et al (2023) Predicting the transmission trend of respiratory viruses in new regions via geospatial similarity learning. Int J Appl Earth Obs Geoinf 125:103559

    Google Scholar 

  • Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11(2):136–140

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Wang P, Yuan W, Zhu G (2018) Kaempferol inhibited bovine herpesvirus 1 replication and LPS-induced inflammatory response. Acta Virol 62(2):220–225

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Xue L (2019) Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells. Oncol Res Featur Preclin Clin Cancer Ther 27(6):629–634

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The core of the study came from AYR. All authors wrote the manuscript. AAR supervised the manuscript.

Corresponding author

Correspondence to Ali Asghar Rastegari.

Ethics declarations

Conflict of interest

There are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi Rad, A., Rastegari, A.A., Shahanipour, K. et al. Moringa oleifera and Its Biochemical Compounds: Potential Multi-targeted Therapeutic Agents Against COVID-19 and Associated Cancer Progression. Biochem Genet (2024). https://doi.org/10.1007/s10528-024-10758-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-024-10758-w

Keywords

Navigation