Skip to main content

Advertisement

Log in

Effect of polyphenols against complications of COVID-19: current evidence and potential efficacy

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

The COVID-19 pandemic that started in 2019 and resulted in significant morbidity and mortality continues to be a significant global health challenge, characterized by inflammation, oxidative stress, and immune system dysfunction.. Developing therapies for preventing or treating COVID-19 remains an important goal for pharmacology and drug development research. Polyphenols are effective against various viral infections and can be extracted and isolated from plants without losing their therapeutic potential. Researchers have developed methods for separating and isolating polyphenols from complex matrices. Polyphenols are effective in treating common viral infections, including COVID-19, and can also boost immunity. Polyphenolic-based antiviral medications can mitigate SARS-CoV-2 enzymes vital to virus replication and infection. Individual polyphenolic triterpenoids, flavonoids, anthraquinonoids, and tannins may also inhibit the SARS-CoV-2 protease. Polyphenol pharmacophore structures identified to date can explain their action and lead to the design of novel anti-COVID-19 compounds. Polyphenol-containing mixtures offer the advantages of a well-recognized safety profile with few known severe side effects. However, studies to date are limited, and further animal studies and randomized controlled trials are needed in future studies. The purpose of this study was to review and present the latest findings on the therapeutic impact of plant-derived polyphenols on COVID-19 infection and its complications. Exploring alternative approaches to traditional therapies could aid in developing novel drugs and remedies against coronavirus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

ACE2:

Angiotensin converting enzyme-2

AMPK:

AMP-activated protein kinase

AMs:

Alveolar macrophages

APCs:

Antigen-presenting cells

ARDS:

Acute respiratory distress syndrome

ATF3:

Activating transcription factor 3

BAL:

Bronchoalveolar lavage

CBG:

Cytosolic β-glucosidase

CCL:

C–C motif chemokine ligand

CD:

Cluster of differentiation

COX:

Cyclooxygenase

CTLs:

Cytotoxic T lymphocytes

DAMPs:

Danger-associated molecular patterns

dsRNA:

Double-stranded RNA

EGCG:

Epigallocatechin gallate

EGFR:

Epidermal growth factor receptor

ERGIC:

Endoplasmic reticulum-Golgi intermediate compartment

ERK:

Extracellular signal-regulated kinase

FOXP3:

Forkhead box P3

HIF-1:

Hypoxia-inducible factor 1

HLA:

Human leukocyte antigen

HRSV:

Human respiratory syncytial virus

IFNγ:

Interferon-γ

Ig:

Immunoglobulin

IκBα:

Inhibitor of κBα

IKKα:

Inhibitory κB kinase α

IL:

Interleukin

ILT:

Immunoglobulin-like transcript

iNOS:

Inducible nitric oxide synthase

JNK/SAPK:

C-jun N-terminal or stress-activated protein kinases

LPH:

Lactase-phlorizin hydrolase

LPSs:

Lipopolysaccharides

MAPK:

Mitogen-activated protein kinase

MBL:

Mannose-bound lectin

MDMs:

Monocyte-derived macrophages

MHC:

Major histocompatibility complex

MIP:

Macrophage inflammatory protein

NADPH:

Nicotinamide adenine dinucleotide phosphate

NETs:

Neutrophil extracellular traps

NF-Κb:

Nuclear factor kappa B

NK:

Natural killer

NLRP-3:

Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3

NO:

Nitric oxide

Nrf-2:

Nuclear factor erythroid 2-related factor 2

NSAIDs:

Non-steroidal anti-inflammatory drugs

PAMPs:

Pathogen-associated molecular patterns

PF:

Pulmonary fibrosis

PIK3CA:

Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha

PMNs:

Polymorphonuclear neutrophils

RORγt:

Related orphan receptor gamma t

PPARγ:

Peroxisome proliferator-activated receptor gamma

PRRs:

Pattern recognition receptors

RBD:

Receptor-binding domain

RBM:

Receptor-binding motif

ROS:

Reactive oxygen species

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

SeV:

Sendai virus

STAT:

Signal transducers and activators of transcription

TBX1:

T-box transcription factor

TfR1:

Transferrin receptor protein 1

TLR-4:

Toll like receptor 4

TMPRSS2:

Transmembrane serine protease 2

TNFα:

Tumour necrosis factor α

Th1:

T helper 1

References

  1. Karimi Shahri M, Niazkar HR, Rad F. COVID-19 and hematology findings based on the current evidences: a puzzle with many missing pieces. Int J Lab Hematol. 2021;43:160–8.

    Article  PubMed  Google Scholar 

  2. Salavati E, Hajirezaee H, Niazkar HR, Ramezani MS, Sargazi A. COVID-19 patients may present with myocarditis: a case report emphasizing the cardiac involvement of SARS-CoV-2. Med J Islam Repub Iran. 2021;35:104.

    PubMed  PubMed Central  Google Scholar 

  3. COVID-19 Excess Mortality Collaborators. Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21. Lancet. 2022;399:1513–36.

  4. Gallo Marin B, Aghagoli G, Lavine K, Yang L, Siff EJ, Chiang SS, et al. Predictors of COVID-19 severity: a literature review. Rev Med Virol. 2021;31:1–10.

    Article  CAS  PubMed  Google Scholar 

  5. Montenegro F, Unigarro L, Paredes G, Moya T, Romero A, Torres L, et al. Acute respiratory distress syndrome (ARDS) caused by the novel coronavirus disease (COVID-19): a practical comprehensive literature review. Expert Rev Respir Med. 2021;15:183–95.

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Zhong X, Wang Y, Zeng X, Luo T, Liu Q. Clinical determinants of the severity of COVID-19: a systematic review and meta-analysis. PLoS ONE. 2021;16: e0250602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang C, Han J. Will the COVID-19 pandemic end with the Delta and Omicron variants? Environ Chem Lett. 2022;20:2215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature. 2020;583:286–9.

    Article  CAS  PubMed  Google Scholar 

  9. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020;5:831–40.

    Article  PubMed  Google Scholar 

  10. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5:562–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Diaz JH. Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J Travel Med. 2020;27:041.

    Article  Google Scholar 

  12. Osuchowski MF, Winkler MS, Skirecki T, Cajander S, Shankar-Hari M, Lachmann G, et al. The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med. 2021;9:622–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calabretta E, Moraleda JM, Iacobelli M, Jara R, Vlodavsky I, O’Gorman P, et al. COVID-19-induced endotheliitis: emerging evidence and possible therapeutic strategies. Br J Haematol. 2021;193:43–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tomerak S, Khan S, Almasri M, Hussein R, Abdelati A, Aly A, et al. Systemic inflammation in COVID-19 patients may induce various types of venous and arterial thrombosis: a systematic review. Scand J Immunol. 2021;94: e13097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Badawy MA, Yasseen BA, El-Messiery RM, Abdel-Rahman EA, Elkhodiry AA, Kamel AG, et al. Neutrophil-mediated oxidative stress and albumin structural damage predict COVID-19-associated mortality. Elife. 2021;10: e69417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ, Bucciantini M, et al. Healthy effects of plant polyphenols: molecular mechanisms. Int J Mol Sci. 2020;21:1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10:1618.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vajdi M, Farhangi MA. Citrus peel derived’poly-methoxylated flavones (PMF). Int J Vitam Nutr Res. 2021;93:252–67.

    Article  PubMed  Google Scholar 

  19. Zhou H, Zheng B, McClements DJ. Encapsulation of lipophilic polyphenols in plant-based nanoemulsions: Impact of carrier oil on lipid digestion and curcumin, resveratrol and quercetin bioaccessibility. Food Funct. 2021;12:3420–32.

    Article  CAS  PubMed  Google Scholar 

  20. Prabhu S, Molath A, Choksi H, Kumar S, Mehra R. Classifications of polyphenols and their potential application in human health and diseases. Int J Physiol Nutr Phys Educ. 2021;6:293–301.

    Article  Google Scholar 

  21. Melenotte C, Silvin A, Goubet A-G, Lahmar I, Dubuisson A, Zumla A, et al. Immune responses during COVID-19 infection. Oncoimmunology. 2020;9:1807836.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen G-L, Munyao Mutie F, Xu Y-B, Saleri FD, Hu G-W, Guo M-Q. Antioxidant, anti-inflammatory activities and polyphenol profile of Rhamnus prinoides. Pharmaceuticals. 2020;13:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jo S, Kim S, Shin DH, Kim M-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem. 2020;35:145–51.

    Article  CAS  PubMed  Google Scholar 

  24. Schettig R, Sears T, Klein M, Tan-Lim R, Matthias R Jr, Aussems C, et al. COVID-19 patient with multifocal pneumonia and respiratory difficulty resolved quickly: possible antiviral and anti-inflammatory benefits of quercinex (nebulized quercetin-NAC) as adjuvant. Adv Infect Dis. 2020;10:45–55.

    CAS  Google Scholar 

  25. Ryu YB, Jeong HJ, Kim JH, Kim YM, Park J-Y, Kim D, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg Med Chem. 2010;18:7940–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verma D, Mitra D, Paul M, Chaudhary P, Kamboj A, Thatoi H, et al. Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PLpro and Mpro/3CLpro: molecular docking and simulation studies of three pertinent medicinal plant natural components. Curr Res Pharmacol Drug Discov. 2021;2: 100038.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schwarz S, Sauter D, Wang K, Zhang R, Sun B, Karioti A, et al. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med. 2014;80:177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miura Y, Chiba T, Tomita I, Koizumi H, Miura S, Umegaki K, et al. Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice. J Nutr. 2001;131:27–32.

    Article  CAS  PubMed  Google Scholar 

  29. Syed DN, Afaq F, Kweon MH, Hadi N, Bhatia N, Spiegelman VS, et al. Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-κB activation in normal human bronchial epithelial cells. Oncogene. 2007;26:673–82.

    Article  CAS  PubMed  Google Scholar 

  30. Villagomez J. In vitro antiviral activity of black tea polyphenols on sindbis virus in vero cells. Theses Dissert Culminating Proj. 2017;19:1–33.

    Google Scholar 

  31. Ge M, Xiao Y, Chen H, Luo F, Du G, Zeng F. Multiple antiviral approaches of (–)-epigallocatechin-3-gallate (EGCG) against porcine reproductive and respiratory syndrome virus infection in vitro. Antivir Res. 2018;158:52–62.

    Article  CAS  PubMed  Google Scholar 

  32. Chiow KH, Phoon MC, Putti T, Tan BK, Chow VT. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac J Trop Med. 2016;9:1–7.

    Article  CAS  PubMed  Google Scholar 

  33. Palamara AT, Nencioni L, Aquilano K, De Chiara G, Hernandez L, Cozzolino F, et al. Inhibition of influenza A virus replication by resveratrol. J Infect Dis. 2005;191:1719–29.

    Article  CAS  PubMed  Google Scholar 

  34. Di Pierro F, Derosa G, Maffioli P, Bertuccioli A, Togni S, Riva A, et al. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: a prospective, randomized, controlled, and open-label study. Int J Gen Med. 2021;14:2359–66.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang H, Liao D, Zhou G, Zhu Z, Cui Y, Pu R. Antiviral activities of resveratrol against rotavirus in vitro and in vivo. Phytomedicine. 2020;77: 153230.

    Article  CAS  PubMed  Google Scholar 

  36. Liu S, Lu H, Zhao Q, He Y, Niu J, Debnath AK, et al. Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41. Biochim Biophys Acta Gen Subj. 2005;1723:270–81.

    Article  CAS  Google Scholar 

  37. Ciesek S, von Hahn T, Colpitts CC, Schang LM, Friesland M, Steinmann J, et al. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology. 2011;54:1947–55.

    Article  CAS  PubMed  Google Scholar 

  38. Pasquereau S, Nehme Z, Haidar Ahmad S, Daouad F, Van Assche J, Wallet C, et al. Resveratrol inhibits HCoV-229E and SARS-CoV-2 coronavirus replication in vitro. Viruses. 2021;13:354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Astuti I. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr Clin Res Rev. 2020;14:407–12.

    Article  Google Scholar 

  41. Tsai P-H, Lai W-Y, Lin Y-Y, Luo Y-H, Lin Y-T, Chen H-K, et al. Clinical manifestation and disease progression in COVID-19 infection. J Chin Med Assoc. 2021;84:3–8.

    Article  CAS  PubMed  Google Scholar 

  42. da Rosa Mesquita R, Francelino Silva Junior LC, Santos Santana FM, Farias de Oliveira T, Campos Alcântara R, Monteiro Arnozo G, et al. Clinical manifestations of COVID-19 in the general population: systematic review. Wien Klin Wochenschr. 2021;133:377–82.

  43. Letarov AV, Babenko VV, Kulikov EE. Free SARS-CoV-2 spike protein S1 particles may play a role in the pathogenesis of COVID-19 infection. Biochem (Mosc). 2021;86:257–61.

    Article  CAS  Google Scholar 

  44. Yi C, Sun X, Ye J, Ding L, Liu M, Yang Z, et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol Immunol. 2020;17:621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci USA. 2004;101:4240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA. 2009;106:5871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang B, Jia Y, Meng Y, Xue Y, Liu K, Li Y, et al. SNX27 suppresses SARS-CoV-2 infection by inhibiting viral lysosome/late endosome entry. Proc Natl Acad Sci USA. 2022;119: e2117576119.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Koch J, Uckeley ZM, Doldan P, Stanifer M, Boulant S, Lozach PY. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO J. 2021;40: e107821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, et al. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008;18:290–301.

    Article  CAS  PubMed  Google Scholar 

  50. Bayati A, Kumar R, Francis V, McPherson PS. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem. 2021;296: 100306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li X, Yuan H, Li X, Wang H. Spike protein mediated membrane fusion during SARS-CoV-2 infection. J Med Virol. 2023;95: e28212.

    Article  CAS  PubMed  Google Scholar 

  52. Vkovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19:155–70.

    Article  CAS  PubMed  Google Scholar 

  53. Hopfer H, Herzig MC, Gosert R, Menter T, Hench J, Tzankov A, et al. Hunting coronavirus by transmission electron microscopy–a guide to SARS-CoV-2-associated ultrastructural pathology in COVID-19 tissues. Histopathology. 2021;78:358–70.

    Article  PubMed  Google Scholar 

  54. Okalang U, Mualem Bar-Ner B, Rajan KS, Friedman N, Aryal S, Egarmina K, et al. The spliced leader RNA silencing (SLS) pathway in Trypanosoma brucei is induced by perturbations of endoplasmic reticulum, golgi complex, or mitochondrial protein factors: functional analysis of SLS-inducing kinase PK3. MBio. 2021;12:e02602-e2621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cun Y, Li C, Shi L, Sun M, Dai S, Sun L, et al. COVID-19 coronavirus vaccine T cell epitope prediction analysis based on distributions of HLA class I loci (HLA-A,-B,-C) across global populations. Hum Vaccin Immunother. 2021;17:1097–108.

    Article  CAS  PubMed  Google Scholar 

  56. Hernández-Doño S, Sánchez-González RA, Trujillo-Vizuet MG, Zamudio-Castellanos FY, García-Silva R, Bulos-Rodríguez P, et al. Protective HLA alleles against severe COVID-19: HLA-A* 68 as an ancestral protection allele in Tapachula-Chiapas, Mexico. Clin Immunol. 2022:108990.

  57. Yoo J-S, Sasaki M, Cho SX, Kasuga Y, Zhu B, Ouda R, et al. SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1-IRF1-NLRC5 axis. Nat Commun. 2021;12:6602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of immune response during SARS-CoV-2 infection: lessons from the past. Front Immunol. 2020;11:1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dos Santos ACM, Dos Santos BRC, Dos Santos BB, de Moura EL, Ferreira JM, Dos Santos LKC, et al. Genetic polymorphisms as multi-biomarkers in severe acute respiratory syndrome (SARS) by coronavirus infection: a systematic review of candidate gene association studies. Infect Genet Evol. 2021;93: 104846.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Qu J, Wu C, Li X, Zhang G, Jiang Z, Li X, et al. Profile of immunoglobulin G and IgM antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;71:2255–8.

    Article  CAS  PubMed  Google Scholar 

  61. Jiang H-W, Li Y, Zhang H-N, Wang W, Yang X, Qi H, et al. SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses. Nat Commun. 2020;11:1–11.

    Article  Google Scholar 

  62. Shang Z, Chan SY, Liu WJ, Li P, Huang W. Recent insights into emerging coronavirus: SARS-CoV-2. ACS Infect Dis. 2020;7:1369–88.

    Article  PubMed  Google Scholar 

  63. De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14:523–34.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55: 102763.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Toor SM, Saleh R, Sasidharan Nair V, Taha RZ, Elkord E. T-cell responses and therapies against SARS-CoV-2 infection. Immunology. 2021;162:30–43.

    Article  CAS  PubMed  Google Scholar 

  67. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184:861–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383:120–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article  CAS  PubMed  Google Scholar 

  70. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22:240–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26:1636–43.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Galani IE, Rovina N, Lampropoulou V, Triantafyllia V, Manioudaki M, Pavlos E, et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat Immunol. 2021;22:32–40.

    Article  CAS  PubMed  Google Scholar 

  73. Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Meulen J, Koerten HK, et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol. 2006;80:5927–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19:181–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yao T, Foo C, Zheng G, Huang R, Li Q, Shen J, et al. Insight into the mechanisms of coronaviruses evading host innate immunity. Biochim Biophys Acta Mol Basis Dis. 2023;1869: 166671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Minkoff JM, tenOever B. Innate immune evasion strategies of SARS-CoV-2. Nat Rev Microbiol. 2023;21:178–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rubio-Casillas A, Redwan EM, Uversky VN. SARS-CoV-2: a master of immune evasion. Biomedicines. 2022;10:1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chakraborty C, Sharma AR, Bhattacharya M, Lee S-S. A detailed overview of immune escape, antibody escape, partial vaccine escape of SARS-CoV-2 and their emerging variants with escape mutations. Front immunol. 2022;13: 801522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mittal A, Khattri A, Verma V. Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants. PLoS Pathog. 2022;18: e1010260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang S, Wang L, Cheng G. The battle between host and SARS-CoV-2: innate immunity and viral evasion strategies. Mol Ther. 2022;30:1869–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. El Gharras H. Polyphenols: food sources, properties and applications—a review. Food Sci Technol Int. 2009;44:2512–8.

    Article  Google Scholar 

  82. Mrduljaš N, Krešic G, Bilušic T. Polyphenols: food sources and health benefits in functional food-improve health through adequate food. In: Hueda MC, editor. London: IntechOpen; 2017. https://www.intechopen.com/

  83. Guyot S, Marnet N, Laraba D, Sanoner P, Drilleau J-F. Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety (Malus domestica var. Kermerrien). J Agric Food Chem. 1998;46:1698–705.

    Article  CAS  Google Scholar 

  84. Tresserra-Rimbau A, Lamuela-Raventos RM, Moreno JJ. Polyphenols, food and pharma. Current knowledge and directions for future research. Biochem Pharmacol. 2018;156:186–95.

    Article  CAS  PubMed  Google Scholar 

  85. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000;130:2073S-S2085.

    Article  CAS  PubMed  Google Scholar 

  86. D’Archivio M, Filesi C, Varì R, Scazzocchio B, Masella R. Bioavailability of the polyphenols: status and controversies. Int J Mol Sci. 2010;11:1321–42.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tapiero H, Tew K, Ba GN, Mathe G. Polyphenols: do they play a role in the prevention of human pathologies? Biomed Pharmacother. 2002;56:200–7.

    Article  CAS  PubMed  Google Scholar 

  88. Sesink AL, Arts IC, Faassen-Peters M, Hollman PC. Intestinal uptake of quercetin-3-glucoside in rats involves hydrolysis by lactase phlorizin hydrolase. J Nutr. 2003;133:773–6.

    Article  CAS  PubMed  Google Scholar 

  89. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, et al. Quercetin, Inflammation and Immunity. Nutrients. 2016;8:167.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mitsunari K, Miyata Y, Matsuo T, Mukae Y, Otsubo A, Harada J, et al. Pharmacological effects and potential clinical usefulness of polyphenols in benign prostatic hyperplasia. Molecules. 2021;26:450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Naeini F, Tutunchi H, Razmi H, Mahmoodpoor A, Vajdi M, Sefidmooye Azar P, et al. Does nano-curcumin supplementation improve hematological indices in critically ill patients with sepsis? A randomized controlled clinical trial. J Food Biochem. 2022;46: e14093.

    Article  CAS  PubMed  Google Scholar 

  92. Vajdi M, Sefidmooye Azar P, Mahmoodpoor A, Dashti F, Sanaie S, Kiani Chalmardi F, et al. A comprehensive insight into the molecular and cellular mechanisms of action of resveratrol on complications of sepsis a systematic review. Phytother Res. 2023;37:3780–808.

    Article  CAS  PubMed  Google Scholar 

  93. Vajdi M, Karimi A, Karimi M, Farhangi MA, Askari G. Effects of luteolin on sepsis: a comprehensive systematic review. Phytomedicine. 2023:154734.

  94. Karimi A, Jazani AM, Darzi M, Azgomi RND, Vajdi M. Effects of curcumin on blood pressure: a systematic review and dose-response meta-analysis. Nutr Metab Cardiovasc Dis. 2023;33(11):2089–101.

    Article  CAS  PubMed  Google Scholar 

  95. Sahebkar A. Curcuminoids for the management of hypertriglyceridaemia. Nat Rev Cardiol. 2014;11:123.

    Article  CAS  PubMed  Google Scholar 

  96. González-Gallego J, García-Mediavilla MV, Sánchez-Campos S, Tuñón MJ. Fruit polyphenols, immunity and inflammation. Br J Nutr. 2010;104 (Suppl 3):S15–27. https://doi.org/10.1017/S0007114510003910.

    Article  CAS  PubMed  Google Scholar 

  97. Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, et al. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev. 2012;64:102–46.

    Article  CAS  PubMed  Google Scholar 

  98. Coustan DR. Pharmacological management of gestational diabetes: an overview. Diabetes Care. 2007;30:S206–8.

    Article  CAS  PubMed  Google Scholar 

  99. Anderson PL, Kiser JJ, Gardner EM, Rower JE, Meditz A, Grant RM. Pharmacological considerations for tenofovir and emtricitabine to prevent HIV infection. J Antimicrob Chemother. 2011;66:240–50.

    Article  CAS  PubMed  Google Scholar 

  100. Van Gaal L, Dirinck E. Pharmacological approaches in the treatment and maintenance of weight loss. Diabetes Care. 2016;39:S260–7.

    Article  PubMed  Google Scholar 

  101. Palinski W. Immunomodulation: a new role for statins? Nat Med. 2000;6:1311–2.

    Article  CAS  PubMed  Google Scholar 

  102. Ahmadi A, Jamialahmadi T, Sahebkar A. Polyphenols and atherosclerosis: a critical review of clinical effects on LDL oxidation. Pharmacol Res. 2022;184: 106414.

    Article  CAS  PubMed  Google Scholar 

  103. Cicero AFG, Sahebkar A, Fogacci F, Bove M, Giovannini M, Borghi C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: a double-blind, placebo-controlled clinical trial. Eur J Nutr. 2020;59:477–83.

    Article  CAS  PubMed  Google Scholar 

  104. Keihanian F, Saeidinia A, Khameneh Bagheri R, Johnston ThP, Sahebkar A. Curcumin, hemostasis, thrombosis, and coagulation. J Cell Physiol. 2018;233:4497–511.

    Article  CAS  PubMed  Google Scholar 

  105. Vajdi M, Hassanizadeh S, Hassanizadeh R, Bagherniya M. Curcumin supplementation effect on liver enzymes in patients with nonalcoholic fatty liver disease: a GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Nutr Rev. 2024;12:nuad166.

    Article  Google Scholar 

  106. Marjaneh RM, Rahmani F, Hassanian SM, Rezaei N, Hashemzehi M, Bahrami A, et al. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol. 2018;233:6785–98.

    Article  CAS  PubMed  Google Scholar 

  107. Mohajeri M, Sahebkar A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: a review. Crit Rev Oncol Hematol. 2018;122:30–51.

    Article  PubMed  Google Scholar 

  108. Mokhtari-Zaer A, Marefati N, Atkin SL, Butler AE, Sahebkar A. The protective role of curcumin in myocardial ischemia–reperfusion injury. J Cell Physiol. 2018;234:214–22.

    Article  PubMed  Google Scholar 

  109. Panahi Y, Fazlolahzadeh O, Atkin SL, Majeed M, Butler AE, Johnston TP, et al. Evidence of curcumin and curcumin analogue effects in skin diseases: a narrative review. J Cell Physiol. 2019;234:1165–78.

    Article  CAS  PubMed  Google Scholar 

  110. Sahebkar A. Effects of resveratrol supplementation on plasma lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2013;71:822–35.

    Article  PubMed  Google Scholar 

  111. Sahebkar A, Serban C, Ursoniu S, Wong ND, Muntner P, Graham IM, et al. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors - Results from a systematic review and meta-analysis of randomized controlled trials. Int J Cardiol. 2015;189:47–55.

    Article  PubMed  Google Scholar 

  112. Sahebkar A. A systematic review and meta-analysis of randomized controlled trials investigating the effects of curcumin on blood lipid levels. Clin Nutr. 2014;33(3):406–14.

    Article  CAS  PubMed  Google Scholar 

  113. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol. 2017;1:35.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Chojnacka K, Lewandowska U. Inhibition of pro-inflammatory cytokine secretion by polyphenol-rich extracts in macrophages via NF-κB pathway. Food Rev Int. 2023;39:5459–78.

    Article  CAS  Google Scholar 

  115. Murata T, Jamsransuren D, Matsuda S, Ogawa H, Takeda Y. Rapid virucidal activity of japanese saxifraga species-derived condensed tannins against SARS-CoV-2, influenza A virus, and human norovirus surrogate viruses. Appl Environ Microbiol. 2023;89: e0023723.

    Article  PubMed  Google Scholar 

  116. Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020;143: 110102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Panieri E, Buha A, Telkoparan-Akillilar P, Cevik D, Kouretas D, Veskoukis A, et al. Potential applications of NRF2 modulators in cancer therapy. Antioxidants. 2020;9:193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Panahi Y, Sahebkar A, Amiri M, Davoudi SM, Beiraghdar F, Hoseininejad SL, et al. Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: results of a randomised, double-blind, placebo-controlled trial. Br J Nutr. 2012;108:1272–9.

    Article  CAS  PubMed  Google Scholar 

  119. Lammi C, Arnoldi A. Food-derived antioxidants and COVID-19. J Food Biochem. 2021;45: e13557.

    Article  CAS  PubMed  Google Scholar 

  120. Chourasia M, Koppula PR, Battu A, Ouseph MM, Singh AK. EGCG, a green tea catechin, as a potential therapeutic agent for symptomatic and asymptomatic SARS-CoV-2 infection. Molecules. 2021;26:1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ohishi T, Goto S, Monira P, Isemura M, Nakamura Y. Anti-inflammatory action of green tea. Antiinflamm Antiallergy Agents Med Chem. 2016;15:74–90.

    Article  CAS  PubMed  Google Scholar 

  122. Li X, Yao X, Wang Y, Hu F, Wang F, Jiang L, et al. MLH1 promoter methylation frequency in colorectal cancer patients and related clinicopathological and molecular features. PLoS ONE. 2013;8: e59064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tang D, Kang R, Xiao W, Zhang H, Lotze MT, Wang H, et al. Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. Am J Respir Cell Mol Biol. 2009;41:651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Karimi A, Naeini F, Azar VA, Hasanzadeh M, Ostadrahimi A, Niazkar HR, et al. A comprehensive systematic review of the therapeutic effects and mechanisms of action of quercetin in sepsis. Phytomedicine. 2021;86: 153567.

    Article  CAS  PubMed  Google Scholar 

  125. Forester SC, Lambert JD. The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Mol Nutr Food Res. 2011;55:844–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Truong V-L, Jeong W-S. Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases. Food Sci Hum Wellness. 2022;11:502–11.

    Article  CAS  Google Scholar 

  127. Jang I-A, Kim EN, Lim JH, Kim MY, Ban TH, Yoon HE, et al. Effects of resveratrol on the renin-angiotensin system in the aging kidney. Nutrients. 2018;10:1741.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Aksoy H, Karadag AS, Wollina U. Angiotensin II receptors: Impact for COVID-19 severity. Dermatol Ther. 2020;33: e13989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Warner FJ, Rajapaksha H, Shackel N, Herath CB. ACE2: from protection of liver disease to propagation of COVID-19. Clin Sci. 2020;134:3137–58.

    Article  CAS  Google Scholar 

  130. Ramdani L, Bachari K. Potential therapeutic effects of resveratrol against SARS-CoV-2. Acta Virol. 2020;64.

  131. de Ligt M, Hesselink MK, Jorgensen J, Hoebers N, Blaak EE, Goossens GH. Resveratrol supplementation reduces ACE2 expression in human adipose tissue. Adipocyte. 2021;10:408–11.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Yang M, Wei J, Huang T, Lei L, Shen C, Lai J, et al. Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured Vero cells. Phytother Res. 2021;35:1127.

    Article  CAS  PubMed  Google Scholar 

  133. Rossi GA, Sacco O, Capizzi A, Mastromarino P. Can resveratrol-inhaled formulations be considered potential adjunct treatments for COVID-19? Front immunol. 2021;12: 670955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ter Ellen BM, Dinesh Kumar N, Bouma EM, Troost B, van de Pol DP, Van der Ende-Metselaar HH, et al. Resveratrol and pterostilbene inhibit SARS-CoV-2 replication in air–liquid interface cultured human primary bronchial epithelial cells. Viruses. 2021;13:1335.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Xu H, Li J, Song S, Xiao Z, Chen X, Huang B, et al. Effective inhibition of coronavirus replication by Polygonum cuspidatum. Front Biosci (Landmark Ed). 2021;26:789–98.

    Article  CAS  PubMed  Google Scholar 

  136. Marinella MA. Indomethacin and resveratrol as potential treatment adjuncts for SARS-CoV-2/COVID-19. Int J Clin Pract Suppl. 2020;74: e13535.

    Article  CAS  Google Scholar 

  137. McCreary MR, Schnell PM, Rhoda DA. Randomized double-blind placebo-controlled proof-of-concept trial of resveratrol for outpatient treatment of mild coronavirus disease (COVID-19). Sci Rep. 2022;12:10978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Filardo S, Di Pietro M, Mastromarino P, Sessa R. Therapeutic potential of resveratrol against emerging respiratory viral infections. Pharmacol Ther. 2020;214: 107613.

    Article  CAS  PubMed  Google Scholar 

  139. AbdelMassih A, Yacoub E, Husseiny RJ, Kamel A, Hozaien R, El Shershaby M, et al. Hypoxia-inducible factor (HIF): the link between obesity and COVID-19. Obes Med. 2021;22: 100317.

    Article  PubMed  Google Scholar 

  140. Hoang T. An approach of fatty acids and resveratrol in the prevention of COVID-19 severity. Phytother Res. 2021;35:2269.

    Article  CAS  PubMed  Google Scholar 

  141. Angeli F, Spanevello A, Reboldi G, Visca D, Verdecchia P. SARS-CoV-2 vaccines: lights and shadows. Eur J Intern Med. 2021;88:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hassaniazad M, Eftekhar E, Inchehsablagh BR, Kamali H, Tousi A, Jaafari MR, et al. A triple-blind, placebo-controlled, randomized clinical trial to evaluate the effect of curcumin-containing nanomicelles on cellular immune responses subtypes and clinical outcome in COVID-19 patients. Phytother Res. 2021;35:6417–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bruder D, Srikiatkhachorn A, Enelow RI. Cellular immunity and lung injury in respiratory virus infection. Viral Immunol. 2006;19:147–55.

    Article  CAS  PubMed  Google Scholar 

  144. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. 2020;34: 101623.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Djalali M, Abdolahi M, Hosseini R, Miraghajani M, Mohammadi H, Djalali M. The effects of nano-curcumin supplementation on Th1/Th17 balance in migraine patients: a randomized controlled clinical trial. Complement Ther Clin Pract. 2020;41: 101256.

    Article  PubMed  Google Scholar 

  146. Meidaninikjeh S, Sabouni N, Marzouni HZ, Bengar S, Khalili A, Jafari R. Monocytes and macrophages in COVID-19: friends and foes. Life Sci. 2021;269: 119010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. MacDonald L, Alivernini S, Tolusso B, Elmesmari A, Somma D, Perniola S, et al. COVID-19 and RA share an SPP1 myeloid pathway that drives PD-L1+ neutrophils and CD14+ monocytes. JCI Insight. 2021;6(13): e147413.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Rabaan AA, Al-Ahmed SH, Muhammad J, Khan A, Sule AA, Tirupathi R, et al. Role of inflammatory cytokines in COVID-19 patients: a review on molecular mechanisms, immune functions, immunopathology and immunomodulatory drugs to counter cytokine storm. Vaccines. 2021;9:436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Thimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, Subramaniam KT, Radhakrishnan A, Bhojraj S, et al. Antiviral and immunomodulatory activity of curcumin: a case for prophylactic therapy for COVID-19. Heliyon. 2021;7: e06350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yang M, Wei J, Huang T, Lei L, Shen C, Lai J, et al. Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured vero cells. Phytother Res. 2021;35(3):1127–9.

    Article  CAS  PubMed  Google Scholar 

  151. Ungarala R, Munikumar M, Sinha SN, Kumar D, Sunder RS, Challa S. Assessment of antioxidant, immunomodulatory activity of oxidised Epigallocatechin-3-Gallate (green tea polyphenol) and its action on the main protease of SARS-CoV-2—an in vitro and in silico approach. Antioxidants. 2022;11:294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Aucoin M, Cooley K, Saunders PR, Cardozo V, Remy D, Cramer H, et al. The effect of quercetin on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: a rapid review. Adv Integr Med. 2020;7:247–51.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Mohammadi A, Blesso ChN, Barreto GE, Banach M, Majeed M, Sahebkar A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem. 2019;66:1–19.

    Article  CAS  PubMed  Google Scholar 

  154. Manjunath SH, Thimmulappa RK. Antiviral, immunomodulatory, and anticoagulant effects of quercetin and its derivatives: potential role in prevention and management of COVID-19. J Pharm Anal. 2022;12:29–34.

    Article  PubMed  Google Scholar 

  155. Chai Y-S, Chen Y-Q, Lin S-H, Xie K, Wang C-J, Yang Y-Z, et al. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother. 2020;125:109946.

    Article  CAS  PubMed  Google Scholar 

  156. Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. Phytochemicals as modulators of M1–M2 macrophages in inflammation. Oncotarget. 2018;9:17937.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zhang L, Virgous C, Si H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J Nutr Biochem. 2019;69:19–30.

    Article  CAS  PubMed  Google Scholar 

  158. Momtazi-Borojeni AA, Abdollahi E, Nikfar B, Chaichian S, Ekhlasi-Hundrieser M. Curcumin as a potential modulator of M1 and M2 macrophages: new insights in atherosclerosis therapy. Heart Fail Rev. 2019;24:399–409.

    Article  CAS  PubMed  Google Scholar 

  159. Zingg JM, Hasan ST, Cowan D, Ricciarelli R, Azzi A, Meydani M. Regulatory effects of curcumin on lipid accumulation in monocytes/macrophages. J Cell Biochem. 2012;113:833–40.

    Article  CAS  PubMed  Google Scholar 

  160. Lee S-M, Moon J, Cho Y, Chung JH, Shin M-J. Quercetin up-regulates expressions of peroxisome proliferator-activated receptor γ, liver X receptor α, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human macrophage cell line. Nutr Res. 2013;33:136–43.

    Article  CAS  PubMed  Google Scholar 

  161. Karimi A, Ghodsi R, Kooshki F, Karimi M, Asghariazar V, Tarighat-Esfanjani A. Therapeutic effects of curcumin on sepsis and mechanisms of action: a systematic review of preclinical studies. Phytother Res. 2019;33:2798–820.

    Article  CAS  PubMed  Google Scholar 

  162. Bhaskar S, Sudhakaran P, Helen A. Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway. Cell Immunol. 2016;310:131–40.

    Article  CAS  PubMed  Google Scholar 

  163. Zhong Y, Liu C, Feng J, Li JF, Fan ZC. Curcumin affects ox-LDL-induced IL-6, TNF-α, MCP-1 secretion and cholesterol efflux in THP-1 cells by suppressing the TLR4/NF-κB/miR33a signaling pathway. Exp Ther Med. 2020;20:1856–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Abe Y, Hashimoto SHU, Horie T, Abe Y, Hashimoto SH, Horie T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res. 1999;39:41–7.

    Article  CAS  PubMed  Google Scholar 

  165. Naeini F, Tutunchi H, Razmi H, Mahmoodpoor A, Vajdi M, Sefidmooye Azar P, et al. Does nano‐curcumin supplementation improve hematological indices in critically ill patients with sepsis? A randomized controlled clinical trial. J Food Biochem. 2022:e14093.

  166. Domi E, Hoxha M, Kolovani E, Tricarico D, Zappacosta B. The importance of nutraceuticals in COVID-19: What’s the role of resveratrol? Molecules. 2022;27:2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chen L, Yang S, Zumbrun EE, Guan H, Nagarkatti PS, Nagarkatti M. Resveratrol attenuates lipopolysaccharide-induced acute kidney injury by suppressing inflammation driven by macrophages. Mol Nutr Food Res. 2015;59:853–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lovelace ES, Maurice NJ, Miller HW, Slichter CK, Harrington R, Magaret A, et al. Silymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cells. PLoS ONE. 2017;12: e0171139.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Alarcon P, Espinosa G, Millan C, Saravia J, Quinteros V, Enriquez R, et al. Piscirickettsia salmonis-triggered extracellular traps formation as an innate immune response of Atlantic salmon-derived polymorphonuclear neutrophils. Biology. 2021;10:206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cui S-N, Tan H-Y, Fan G-C. Immunopathological roles of neutrophils in virus infection and COVID-19. Shock (Augusta, GA). 2021;56:345.

    Article  CAS  PubMed  Google Scholar 

  171. Kaneider NC, Mosheimer B, Reinisch N, Patsch JR, Wiedermann CJ. Inhibition of thrombin-induced signaling by resveratrol and quercetin: effects on adenosine nucleotide metabolism in endothelial cells and platelet–neutrophil interactions. Thromb Res. 2004;114:185–94.

    Article  CAS  PubMed  Google Scholar 

  172. Tsai YF, Chen CY, Chang WY, Syu YT, Hwang TL. Resveratrol suppresses neutrophil activation via inhibition of Src family kinases to attenuate lung injury. Free Radic Biol Med. 2019;145:67–77.

    Article  CAS  PubMed  Google Scholar 

  173. Littera R, Chessa L, Deidda S, Angioni G, Campagna M, Lai S, et al. Natural killer-cell immunoglobulin-like receptors trigger differences in immune response to SARS-CoV-2 infection. PLoS ONE. 2021;16: e0255608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Masselli E, Vaccarezza M, Carubbi C, Pozzi G, Presta V, Mirandola P, et al. NK cells: a double edge sword against SARS-CoV-2. Adv Biol Regul. 2020;77: 100737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bernini R, Velotti F. Natural polyphenols as immunomodulators to rescue immune response homeostasis: Quercetin as a research model against severe COVID-19. Molecules. 2021;26:5803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bill MA, Bakan C, Benson DM, Fuchs J, Young G, Lesinski GB. Curcumin induces proapoptotic effects against human melanoma cells and modulates the cellular response to immunotherapeutic cytokines. Mol Cancer Ther. 2009;8:2726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Liao M-T, Wu C-C, Wu S-FV, Lee M-C, Hu W-C, Tsai K-W, et al. Resveratrol as an adjunctive therapy for excessive oxidative stress in aging COVID-19 patients. Antioxidants. 2021;10:1440.

  178. Ha Y, Kim O-K, Nam D-E, Kim Y, Kim E, Jun W, et al. Effects of Curcuma longa L. extracts on natural killer cells and T cells. J Korean Soc Food Sci Nutr. 2015;44:307–13.

    Article  Google Scholar 

  179. Meroni P, Barcellini W, Borghi M, Vismara A, Ferraro G, Ciani D, et al. Silybin inhibition of human T-lymphocyte activation. Int J Tissue React. 1988;10:177–81.

    CAS  PubMed  Google Scholar 

  180. Valková V, Ďúranová H, Bilčíková J. Milk thistle (Silybum marianum): a valuable medicinal plant with several therapeutic purposes. J Microbiol Biotechnol Food Sci. 2020;9:836.

    Article  Google Scholar 

  181. Urra J, Cabrera C, Porras L, Ródenas I. Selective CD8 cell reduction by SARS-CoV-2 is associated with a worse prognosis and systemic inflammation in COVID-19 patients. Clin Immunol. 2020;217: 108486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F. T helper cells plasticity in inflammation. Cytometry A. 2014;85:36–42.

    Article  PubMed  Google Scholar 

  183. Yang Y, Zhang X, Xu M, Wu X, Zhao F, Zhao C. Quercetin attenuates collagen-induced arthritis by restoration of Th17/Treg balance and activation of Heme Oxygenase 1-mediated anti-inflammatory effect. Int Immunopharmacol. 2018;54:153–62.

    Article  CAS  PubMed  Google Scholar 

  184. Bastaminejad S, Bakhtiyari S. Quercetin and its relative therapeutic potential against COVID-19: a retrospective review and prospective overview. Curr Mol Med. 2021;21:385–91.

    Article  CAS  PubMed  Google Scholar 

  185. Imler TJ Jr, Petro TM. Decreased severity of experimental autoimmune encephalomyelitis during resveratrol administration is associated with increased IL-17+ IL-10+ T cells, CD4− IFN-γ+ cells, and decreased macrophage IL-6 expression. Int Immunopharmacol. 2009;9:134–43.

    Article  CAS  PubMed  Google Scholar 

  186. Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H. Targeting regulatory T cells by curcumin: a potential for cancer immunotherapy. Pharmacol Res. 2019;147: 104353.

    Article  CAS  PubMed  Google Scholar 

  187. Khazdair MR, Anaeigoudari A, Agbor GA. Anti-viral and anti-inflammatory effects of kaempferol and quercetin and COVID-2019: a scoping review. Asian Pac J Trop Biomed. 2021;11:327–34.

    Article  CAS  Google Scholar 

  188. Kim S-H, Saba E, Kim B-K, Yang W-K, Park Y-C, Shin HJ, et al. Luteolin attenuates airway inflammation by inducing the transition of CD4+ CD25–to CD4+ CD25+ regulatory T cells. Eur J Pharmacol. 2018;820:53–64.

    Article  CAS  PubMed  Google Scholar 

  189. Sodagari HR, Bahramsoltani R, Farzaei MH, Abdolghaffari AH, Rezaei N, Taylor-Robinson AW. Tea polyphenols as natural products for potential future management of HIV infection-an overview. J Nat Remed. 2016;16:60–72.

    Article  Google Scholar 

  190. Nance CL, Siwak EB, Shearer WT. Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy. J Allergy Clin Immunol. 2009;123:459–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Jarnicki AG, Lysaght J, Todryk S, Mills KH. Suppression of antitumor immunity by IL-10 and TGF-β-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol. 2006;177:896–904.

    Article  CAS  PubMed  Google Scholar 

  192. Yang Y, Paik JH, Cho D, Cho J-A, Kim C-W. Resveratrol induces the suppression of tumor-derived CD4+CD25+ regulatory T cells. Int Immunopharmacol. 2008;8:542–7.

    Article  CAS  PubMed  Google Scholar 

  193. Chai Y-S, Chen Y-Q, Lin S-H, Xie K, Wang C-J, Yang Y-Z, et al. Curcumin regulates the differentiation of naïve CD4+ T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother. 2020;125:109946.

    Article  CAS  PubMed  Google Scholar 

  194. Michalski J, Deinzer A, Stich L, Zinser E, Steinkasserer A, Knippertz I. Quercetin induces an immunoregulatory phenotype in maturing human dendritic cells. Immunobiology. 2020;225: 151929.

    Article  CAS  PubMed  Google Scholar 

  195. Kim G-Y, Kim K-H, Lee S-H, Yoon M-S, Lee H-J, Moon D-O, et al. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-κB as potential targets. J Immunol. 2005;174:8116–24.

    Article  CAS  PubMed  Google Scholar 

  196. VasanthiDharmalingam P, Karuppagounder V, Watanabe K, Karmouty-Quintana H, Palaniyandi SS, Guha A, et al. SARS–CoV-2 mediated hyperferritinemia and cardiac arrest: preliminary insights. Drug Discov Today. 2021;26:1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Prasher P, Sharma M. Targeting mucin hypersecretion in COVID-19 therapy. Future Med Chem. 2022;14(10):681–4.

    Article  CAS  PubMed  Google Scholar 

  198. Khan MA, Khan ZA, Charles M, Pratap P, Naeem A, Siddiqui Z, et al. Cytokine storm and mucus hypersecretion in COVID-19: review of mechanisms. J Inflamm Res. 2021;14:175.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Fedson DS, Opal SM, Rordam OM. Hiding in plain sight: an approach to treating patients with severe COVID-19 infection. MBio. 2020;11:e00398-e420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Liang Y, Liu KWK, Yeung SC, Li X, Ip MSM, Mak JCW. (−)-Epigallocatechin-3-gallate reduces cigarette smoke-induced airway neutrophilic inflammation and mucin hypersecretion in rats. Front Pharmacol. 2017;8:618.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Li N, Li Q, Zhou XD, Kolosov VP, Perelman JM. The effect of quercetin on human neutrophil elastase-induced mucin5AC expression in human airway epithelial cells. Int Immunopharmacol. 2012;14:195–201.

    Article  CAS  PubMed  Google Scholar 

  202. Lin X-P, Xue C, Zhang J-M, Wu W-J, Chen X-Y, Zeng Y-M, et al. Curcumin inhibits lipopolysaccharide-induced mucin 5AC hypersecretion and airway inflammation via nuclear factor erythroid 2-related factor 2. Chin Med J. 2018;131:1686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhu T, Chen Z, Chen G, Wang D, Tang S, Deng H, et al. Curcumin attenuates asthmatic airway inflammation and mucus hypersecretion involving a PPAR<i>γ</i>-dependent NF-<i>κ</i>B signaling pathway in vivo and in vitro. Mediat Inflamm. 2019;2019:4927430.

    Article  Google Scholar 

  204. Du L, He Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7:226–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology. 2001;279:371–4.

    Article  CAS  PubMed  Google Scholar 

  206. Bosch BJ, Van der Zee R, De Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003;77:8801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol. 2004;78:11334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Shao Q, Liu T, Wang W, Liu T, Jin X, Chen Z. Promising role of emodin as therapeutics to against viral infections. Front pharmacol. 2022;13: 902626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Omolo CA, Soni N, Fasiku VO, Mackraj I, Govender T. Update on therapeutic approaches and emerging therapies for SARS-CoV-2 virus. Eur J Pharmacol. 2020;883: 173348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ho T-Y, Wu S-L, Chen J-C, Li C-C, Hsiang C-Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antivir Res. 2007;74:92–101.

    Article  CAS  PubMed  Google Scholar 

  211. Hiremath S, Kumar H, Nandan M, Mantesh M, Shankarappa K, Venkataravanappa V, et al. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV-2. 3 Biotech. 2021;11:1–8.

    Article  Google Scholar 

  212. Bellavite P, Donzelli A. Hesperidin and SARS-CoV-2: new light on the healthy function of citrus fruits. Antioxidants. 2020;9(8):742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Davella R, Gurrapu S, Mamidala E. Phenolic compounds as promising drug candidates against COVID-19-an integrated molecular docking and dynamics simulation study. Mater Today Proc. 2022;51:522–7.

    Article  CAS  PubMed  Google Scholar 

  214. Haridas M, Sasidhar V, Nath P, Abhithaj J, Sabu A, Rammanohar P. Compounds of Citrus medica and Zingiber officinale for COVID-19 inhibition: in silico evidence for cues from Ayurveda. Future J Pharm Sci. 2021;7:1–9.

    Google Scholar 

  215. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10:766–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ubani A, Agwom F, Morenikeji OR, Shehu NY, Umera EA, Umar U, et al. Molecular docking analysis of selected phytochemicals on two SARS-CoV-2 targets. F1000Research. 2020;9:1157.

    Article  Google Scholar 

  217. Tallei TE, Tumilaar SG, Niode NJ, Kepel BJ, Idroes R, Effendi Y, et al. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: a molecular docking study. Scientifica. 2020;2020:6307457.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87:e1–9.

    Article  CAS  PubMed  Google Scholar 

  220. Parvathaneni V, Gupta V. Utilizing drug repurposing against COVID-19—efficacy, limitations, and challenges. Life Sci. 2020;259: 118275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Jena AB, Kanungo N, Nayak V, Chainy GB, Dandapat J. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: insights from computational studies. Sci Rep. 2021;11:2043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kim EN, Kim MY, Lim JH, Kim Y, Shin SJ, Park CW, et al. The protective effect of resveratrol on vascular aging by modulation of the renin–angiotensin system. Atherosclerosis. 2018;270:123–31.

    Article  CAS  PubMed  Google Scholar 

  223. Zahedipour F, Hosseini SA, Sathyapalan T, Majeed M, Jamialahmadi T, Al-Rasadi K, et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res. 2020;34:2911–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Mehany T, Khalifa I, Barakat H, Althwab SA, Alharbi YM, El-Sohaimy S. Polyphenols as promising biologically active substances for preventing SARS-CoV-2: a review with research evidence and underlying mechanisms. Food Biosci. 2021;40: 100891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ren Z, Yan L, Zhang N, Guo Y, Yang C, Lou Z, et al. The newly emerged SARS-like coronavirus HCoV-EMC also has an" Achilles’ heel": current effective inhibitor targeting a 3C-like protease. Protein Cell. 2013;4:248–50.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Dai W, Zhang B, Jiang X-M, Su H, Li J, Zhao Y, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020;368:1331–5.

    Article  CAS  PubMed  Google Scholar 

  227. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582:289–93.

    Article  CAS  PubMed  Google Scholar 

  228. Paraiso IL, Revel JS, Stevens JF. Potential use of polyphenols in the battle against COVID-19. Curr Opin Food Sci. 2020;32:149–55.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Park J-Y, Kim JH, Kim YM, Jeong HJ, Kim DW, Park KH, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem. 2012;20:5928–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Murugan NA, Pandian CJ, Jeyakanthan J. Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. J Biomol Struct Dyn. 2021;39:4415–26.

    Article  CAS  PubMed  Google Scholar 

  231. Kim DW, Seo KH, Curtis-Long MJ, Oh KY, Oh J-W, Cho JK, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem. 2014;29:59–63.

    Article  CAS  PubMed  Google Scholar 

  232. Park J-Y, Yuk HJ, Ryu HW, Lim SH, Kim KS, Park KH, et al. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem. 2017;32:504–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Nguyen TTH, Woo H-J, Kang H-K, Nguyen VD, Kim Y-M, Kim D-W, et al. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett. 2012;34:831–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Song YH, Kim DW, Curtis-Long MJ, Yuk HJ, Wang Y, Zhuang N, et al. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. Biol Pharm Bull. 2014;37:1021–8.

    Article  CAS  PubMed  Google Scholar 

  235. Park J-Y, Jeong HJ, Kim JH, Kim YM, Park S-J, Kim D, et al. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol Pharm Bull. 2012;35:2036–42.

    Article  CAS  PubMed  Google Scholar 

  236. Das S, Sarmah S, Lyndem S, Singha RA. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn. 2021;39:3347–57.

    CAS  PubMed  Google Scholar 

  237. Park J-Y, Ko J-A, Kim DW, Kim YM, Kwon H-J, Jeong HJ, et al. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J Enzyme Inhib Med Chem. 2016;31:23–30.

    Article  CAS  PubMed  Google Scholar 

  238. Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors—an in silico docking and molecular dynamics simulation study. J Biomol Struct Dyn. 2021;39:4362–74.

    Article  CAS  PubMed  Google Scholar 

  239. Mbikay M, Chrétien M. Isoquercetin as an anti-covid-19 medication: a potential to realize. Front pharmacol. 2022;13: 830205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Havsteen B. Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol. 1983;32:1141–8.

    Article  CAS  PubMed  Google Scholar 

  241. Soto ME, Guarner-Lans V, Soria-Castro E, Manzano Pech L, Pérez-Torres I. Is antioxidant therapy a useful complementary measure for covid-19 treatment? An algorithm for its application. Medicina. 2020;56:386.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Wu CP, Calcagno AM, Hladky SB, Ambudkar SV, Barrand MA. Modulatory effects of plant phenols on human multidrug-resistance proteins 1, 4 and 5 (ABCC1, 4 and 5). FEBS J. 2005;272:4725–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Chien M, Anderson TK, Jockusch S, Tao C, Li X, Kumar S, et al. Nucleotide analogues as inhibitors of SARS-CoV-2 polymerase, a key drug target for COVID-19. J Proteome Res. 2020;19:4690–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Singh S, Sk MF, Sonawane A, Kar P, Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn. 2021;39:6249–64.

    Article  CAS  PubMed  Google Scholar 

  245. Pandey K, Lokhande KB, Swamy KV, Nagar S, Dake M. In silico exploration of phytoconstituents from Phyllanthus emblica and Aegle marmelos as potential therapeutics against SARS-CoV-2 RdRp. Bioinform Biol Insights. 2021;15:11779322211027404.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Morán-Santibañez K, Peña-Hernández MA, Cruz-Suárez LE, Ricque-Marie D, Skouta R, Vasquez AH, et al. Virucidal and synergistic activity of polyphenol-rich extracts of seaweeds against measles virus. Viruses. 2018;10:465.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Brugh M Jr. Butylated hydroxytoluene protects chickens exposed to Newcastle disease virus. Science. 1977;197:1291–2.

    Article  CAS  PubMed  Google Scholar 

  248. Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch-Ernst KI, et al. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res. 2018;62:1700447.

    Article  Google Scholar 

  249. Ouyang J, Zhu K, Liu Z, Huang J. Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect. Oxid Med Cell Longev. 2020;2020:9723686.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Yang CS, Lambert JD, Ju J, Lu G, Sang S. Tea and cancer prevention: molecular mechanisms and human relevance. Toxicol Appl Pharmacol. 2007;224:265–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This article has not received any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the manuscript; AS, BDR, MV, and MB conceptualized the review paper. MV, AK, SH, MAF, and MB prepared the original draft. GA, BDR, NMD, and AS were involved in the critical revision of the original draft.

Corresponding author

Correspondence to Amirhossein Sahebkar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vajdi, M., Karimi, A., Hassanizadeh, S. et al. Effect of polyphenols against complications of COVID-19: current evidence and potential efficacy. Pharmacol. Rep 76, 307–327 (2024). https://doi.org/10.1007/s43440-024-00585-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-024-00585-6

Keywords

Navigation