Skip to main content

Advertisement

Log in

The Diagnostic and Prognostic Value of the Immune Checkpoint BGN in Thymoma

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Thymoma is frequently correlated with various autoimmune diseases. However, unequivocal therapeutic targets for thymoma remain undefined, and the role of immune checkpoints in the development of thymoma-related autoimmune illnesses is unclear. We examined 39 thymoma samples and 44 normal control samples from the GEO database. Following batch correction, we identified 224 Differentially Expressed Genes (DEGs) using the Limma package. We employed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to enrich for functional pathways of DEGs. We utilized a Protein–Protein Interaction (PPI) network to identify hub genes and determine their correlation with immune cell infiltration using CIBERSORT. Real-time quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemical staining were implemented to verify identified hub genes in vivo. Simultaneously, we evaluated the prognostic relevance of the hub gene using clinical data. We determined COL1A1, COL1A2, and BGN to be the central hub genes in thymoma. Validation via RT-qPCR, Western blot, and immunohistochemical staining established significant statistical divergence between thymoma tissue and the normal thymus for only BGN. Expression levels of BGN showed strong negative correlation with the infiltration level of B cells and CD4+ T cells, yet a significant positive correlation with the level of neutrophil infiltration. We found high immune infiltration levels of macrophages, NK cells, and Th1 cells in the thymoma microenvironment in patients with a high expression of BGN. Co-localization of BGN and macrophages within thymoma tissue was discerned via tissue staining. Clinical data dictated that thymoma patients exhibiting elevated BGN expression underwent longer hospital stays, longer lengths in intensive care units, greater hospitalization costs, and extended ventilator usage; our study, augmented by clinical information, recognized BGN as possessive of diagnostic and prognostic significance in thymoma through in silico and molecular verification experiments. Our findings offered an important objective for thymoma-treated autoimmune disease comprehension, supplemented by the strong association with immune infiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data can be obtained from TCGA and GEO cohorts.

References

  • Badve S, Goswami C, Gokmen-Polar Y et al (2012) Molecular analysis of thymoma. PLoS ONE 7(8):e42669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boonen A, Rennenberg R, van der Linden S (2000) Thymoma-associated systemic lupus erythematosus, exacerbating after thymectomy. A case report and review of the literature. Rheumatology (oxf) 39(9):1044–1046

    Article  CAS  Google Scholar 

  • Chen X, Fang L, Song S, Guo TB, Liu A, Zhang JZ (2009) Thymic regulation of autoimmune disease by accelerated differentiation of Foxp3+ regulatory T cells through IL-7 signaling pathway. J Immunol (baltim MD 1950) 183(10):6135–6144

    Article  CAS  Google Scholar 

  • Chivu-Economescu M, Necula LG, Matei L et al (2022) Collagen family and other matrix remodeling proteins identified by bioinformatics analysis as hub genes involved in gastric cancer progression and prognosis. Int J Mol Sci 23(6):3214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Syst 1695(5):1–9

    Google Scholar 

  • Gabrielsen ISM, Amundsen SS, Helgeland H et al (2016) Genetic risk variants for autoimmune diseases that influence gene expression in thymus. Hum Mol Genet 25(14):3117–3124

    PubMed  CAS  Google Scholar 

  • Girard N, Mornex F, Van Houtte P, Cordier J-F, van Schil P (2009) Thymoma: a focus on current therapeutic management. J Thorac Oncol 4(1):119–126

    Article  PubMed  Google Scholar 

  • He Z-X, Zhao S-B, Fang X et al (2021) Prognostic and predictive value of BGN in colon cancer outcomes and response to immunotherapy. Front Oncol 11:761030

    Article  PubMed  CAS  Google Scholar 

  • Levidou G, Palamaris K, Sykaras AG et al (2022) Unraveling the role of histone variant CENP-A and chaperone HJURP expression in thymic epithelial neoplasms. Int J Mol Sci 23(15):8339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Severson E, Pignon J-C et al (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17(1):174

    Article  PubMed  PubMed Central  Google Scholar 

  • Li T, Fan J, Wang B et al (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77(21):e108–e110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Chen L, Ma X, Cui P, Lang W, Hao J (2018) Shared gene expression between multiple sclerosis and ischemic stroke. Front Genet 9:598

    Article  PubMed  CAS  Google Scholar 

  • Li T, Fu J, Zeng Z et al (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48(W1):W509–W514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma Q, Long W, Xing C et al (2020) PHF20 promotes glioblastoma cell malignancies through a /-dependent pathway. Front Oncol 10:573318

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizuno H, Kitada K, Nakai K, Sarai A (2009) PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics 2:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Morimoto H, Hida Y, Maishi N et al (2021) Biglycan, tumor endothelial cell secreting proteoglycan, as possible biomarker for lung cancer. Thorac Cancer 12(9):1347–1357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newman AM, Steen CB, Liu CL et al (2019) Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 37(7):773–782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park MJ, Kim YA, Lee SS, Kim BC, Kim MK, Cho KH (2004) Appearance of systemic lupus erythematosus in patients with myasthenia gravis following thymectomy: two case reports. J Korean Med Sci 19(1):134–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Pontén F, Schwenk JM, Asplund A, Edqvist PHD (2011) The Human Protein Atlas as a proteomic resource for biomarker discovery. J Intern Med 270(5):428–446

    Article  PubMed  Google Scholar 

  • Ritchie ME, Phipson B, Wu D et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  PubMed  PubMed Central  Google Scholar 

  • Scorsetti M, Leo F, Trama A et al (2016) Thymoma and thymic carcinomas. Crit Rev Oncol Hematol 99:332–350

    Article  PubMed  Google Scholar 

  • Shelly S, Agmon-Levin N, Altman A, Shoenfeld Y (2011) Thymoma and autoimmunity. Cell Mol Immunol 8(3):199–202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soreq L, Gilboa-Geffen A, Berrih-Aknin S et al (2008) Identifying alternative hyper-splicing signatures in MG-thymoma by exon arrays. PLoS ONE 3(6):e2392

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    Article  PubMed  CAS  Google Scholar 

  • Tang E, Zhou Y, Liu S et al (2022) Metabolomic and transcriptomic profiling identified significant genes in thymic epithelial tumor. Metabolites 12(6):567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tao Z, Lu C, Gao S et al (2021) Two types of immune infiltrating cells and six hub genes can predict the occurrence of myasthenia gravis in patients with thymoma. Bioengineered 12(1):5004–5016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uhlen M, Zhang C, Lee S et al (2017) A pathology atlas of the human cancer transcriptome. Science 357(6352):eaan2507

    Article  PubMed  Google Scholar 

  • Vivian J, Rao AA, Nothaft FA et al (2017) Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol 35(4):314–316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walter W, Sánchez-Cabo F, Ricote M (2015) GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31(17):2912–2914

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Wang EC, Xu D et al (2021) Bioinformatics analysis reveals the potential diagnostic biomarkers for abdominal aortic aneurysm. Front Cardiovasc Med 8:656263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Z, Liu S, Wang Y et al (2020) High expression of KITLG is a new hallmark activating the MAPK pathway in type A and AB thymoma. Thorac Cancer 11(7):1944–1954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang W, Chen S, Cheng X et al (2021) Characteristics of genomic mutations and signaling pathway alterations in thymic epithelial tumors. Ann Transl Med 9(22):1659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu G, Wang LG, Han Y, He QY (2012a) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu G, Wang L-G, Han Y, He Q-Y (2012b) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J Integr Biol 16(5):284–287

    Article  CAS  Google Scholar 

  • Yu Z, Liang C, Tu H et al (2022) Common core genes play vital roles in gastric cancer with different stages. Front Genet 13:881948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zekeridou A, McKeon A, Lennon VA (2016) Frequency of synaptic autoantibody accompaniments and neurological manifestations of thymoma. JAMA Neurol 73(7):853–859

    Article  PubMed  Google Scholar 

  • Zeng S, Zhou F, Wang Y et al (2022) Aberrant expression of the extracellular matrix component Biglycan regulated by Hedgehog signalling promotes colorectal cancer cell proliferation. Acta Biochim Biophys Sin (shanghai) 54(2):243–251

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Yang H, Xiang X, Liu L, Huang H, Tang G (2022) BGN may be a potential prognostic biomarker and associated with immune cell enrichment of gastric cancer. Front Genet 13:765569

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Bian S, Zhou X et al (2020) Single-cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal cancer. Cancer Cell 38(6):818–828

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the contributions from the websites of TCGA, GEO, TRRUST, and TIMER.

Funding

This research was funded by the Beijing-Tianjin-Hebei Basic Research Cooperation Project, 19JCZDJC64400; the Tianjin Northern Medicine Development Foundation, TJNMDF2020YB-01; the Tianjin Northern Medicine Development Foundation, TJNMDF2020ZD-01; the Tianjin Natural Science Foundation of Key Program, 19JCZDJC35500; and the Tianjin Natural Science Foundation of Youth Program, 19JCQNJC12000.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, PZ and YL; methodology, YL and SC and YW; formal analysis, ZZ and JW; investigation, YW and ZT; data curation, YL and ZW; writing and preparation of the original draft, YL, SC, and YW; writing, reviewing, and editing of the manuscript, PZ and YL; visualization, YL; supervision, PZ; project administration, PZ; and funding acquisition, PZ All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Peng Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, S., Wang, Y. et al. The Diagnostic and Prognostic Value of the Immune Checkpoint BGN in Thymoma. Biochem Genet (2023). https://doi.org/10.1007/s10528-023-10523-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-023-10523-5

Keywords

Navigation