Skip to main content
Log in

Characterization of Cellulose Synthase A (CESA) Gene Family in Eudicots

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Cellulose synthase A (CESA) is a key enzyme involved in the complex process of plant cell wall biosynthesis, and it remains a productive subject for research. We employed systems biology approaches to explore structural diversity of eudicot CESAs by exon–intron organization, mode of duplication, synteny, and splice site analyses. Using a combined phylogenetics and comparative genomics approach coupled with co-expression networks we reconciled the evolution of cellulose synthase gene family in eudicots and found that the basic forms of CESA proteins are retained in angiosperms. Duplications have played an important role in expansion of CESA gene family members in eudicots. Co-expression networks showed that primary and secondary cell wall modules are duplicated in eudicots. We also identified 230 simple sequence repeat markers in 103 eudicot CESAs. The 13 identified conserved motifs in eudicots will provide a basis for gene identification and functional characterization in other plants. Furthermore, we characterized (in silico) eudicot CESAs against senescence and found that expression levels of CESAs decreased during leaf senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Appenzeller L et al (2004) Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11:287–299

    Article  CAS  Google Scholar 

  • Artimo P (2012) ExPASy: SIB bioinformatics resource portal. Nucl Acids Res 40:W597–W603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barvkar VT, Pardeshi VC, Kale SM, Kadoo NY, Gupta VS (2012) Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns. BMC Genom 13:175

    Article  CAS  Google Scholar 

  • Betts MJ, Guigó R, Agarwal P, Russell RB (2001) Exon structure conservation despite low sequence similarity: a relic of dramatic events in evolution? EMBO J 20:5354–5360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolser DM, Staines DM, Perry E, Kersey PJ (2017) Ensembl Plants: integrating tools for visualizing, mining, and analyzing plant genomic data. In: Plant genomics databases. Springer, Berlin, pp 1–31

  • Brown AV, Hudson KA (2015) Developmental profiling of gene expression in soybean trifoliate leaves and cotyledons. BMC Plant Biol 15:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AV, Hudson KA (2017) Transcriptional profiling of mechanically and genetically sink-limited soybeans. Plant Cell Environ 40:2307–2318

    Article  CAS  PubMed  Google Scholar 

  • Brusslan JA, Bonora G, Rus-Canterbury AM, Tariq F, Jaroszewicz A, Pellegrini M (2015) A genome-wide chronological study of gene expression and two histone modifications, H3K4me3 and H3K9ac, during developmental leaf senescence. Plant Physiol 168:1246–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB (2004) The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134:224–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caputi L, Malnoy M, Goremykin V, Nikiforova S, Martens S (2012) A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J 69:1030–1042

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC (2011) Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1→4)-β-d-glycans. Plant Physiol 155:171–184

    Article  CAS  PubMed  Google Scholar 

  • Carroll A, Specht CD (2011) Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences. Front Plant Sci 2:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darzentas N (2010) Circoletto: visualizing sequence similarity with Circos. Bioinformatics 26:2620–2621

    Article  CAS  PubMed  Google Scholar 

  • De Vega JJ et al (2015) Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci Rep 5:17394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420

    Article  CAS  PubMed  Google Scholar 

  • Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S et al (2013) Induction of senescence and identification of differentially expressed genes in tomato in response to monoterpene. PLoS One 8:e76029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodstein DM et al (2011) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res 40:D1178–D1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Cui K, Duan A, Zeng Y, Zhang J (2012) Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family. Ecol Evol 2:1996–2004

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland N, Holland D, Helentjaris T, Dhugga KS, Xoconostle-Cazares B, Delmer DP (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol 123:1313–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G ((2014)) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaillon O et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282

    Article  CAS  Google Scholar 

  • Kaur S, Dhugga KS, Gill K, Singh J (2016) Novel structural and functional motifs in cellulose synthase (CesA) genes of bread wheat (Triticum aestivum, L.). PLoS One 11:e0147046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M et al (2009) An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci 14:248–254

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Turner S (2015) Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry 112:91–99

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le B et al (2016) Genome-wide characterization and expression pattern of auxin response factor (ARF) gene family in soybean and common bean. Genes Genom 38:1165–1178

    Article  CAS  Google Scholar 

  • Lee T-H, Tang H, Wang X, Paterson AH (2012) PGDD: a database of gene and genome duplication in plants. Nucl Acids Res 41:D1152–D1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2006) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128

    Article  CAS  PubMed  Google Scholar 

  • Li T, Zhang J, Zhu H, Qu H, You S, Duan X, Jiang Y (2016) Proteomic analysis of differentially expressed proteins involved in peel senescence in harvested mandarin fruit. Front Plant Sci 7:725

    PubMed  PubMed Central  Google Scholar 

  • Little A et al (2018) Revised phylogeny of the Cellulose Synthase gene superfamily: insights into cell wall evolution. Plant Physiol 177:1124–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maleki SS, Mohammadi K, Ji KS (2016) Characterization of cellulose synthesis in plant cells. Sci World J 2016:8641373

    Article  CAS  Google Scholar 

  • Mitchell A et al (2014) The InterPro protein families database: the classification resource after 15 years. Nucl Acids Res 43:D213–D221

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutwil M et al (2011) PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. Plant Cell 23:895–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeem MA et al (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32:261–285

    Article  CAS  Google Scholar 

  • Nawaz MA, Sadia B, Awan FS, Zia MA, Khan IA (2013) Genetic diversity in hyper glucose oxidase producing Aspergillus niger UAF mutants by using molecular markers. Int J Agri Biol 15:362–366

    CAS  Google Scholar 

  • Nawaz MA et al (2017a) Genome and transcriptome-wide analyses of cellulose synthase gene superfamily in soybean. J Plant Physiol 215:163–175

    Article  CAS  PubMed  Google Scholar 

  • Nawaz MA et al (2017b) Systems identification and characterization of cell wall reassembly and degradation related genes in Glycine max (L.) Merill, a Bioenergy Legume. Sci Rep 7:10862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz MA, Yang SH, Rehman HM, Baloch FS, Lee JD, Park JH, Chung G (2017c) Genetic diversity and population structure of Korean wild soybean (Glycine soja Sieb. and Zucc.) inferred from microsatellite markers. Biochem Syst Ecol 71:87–96

    Article  CAS  Google Scholar 

  • Olek AT et al (2014) The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers. Plant Cell 26:2996–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchy N, Lehti-Shiu MD, Shiu S-H (2016) Gene Duplicates: from origins to implications for plant evolution. Plant Physiol 171:2294–2316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Persson S et al (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci 104:15566–15571

    Article  PubMed  PubMed Central  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proost S, Mutwil M (2016) Tools of the trade: studying molecular networks in plants. Curr Opin Plant Biol 30:143–150

    Article  CAS  PubMed  Google Scholar 

  • Rai KM, Thu SW, Balasubramanian VK, Cobos CJ, Disasa T, Mendu V (2016) Identification, characterization, and expression analysis of cell wall-related genes in Sorghum Bicolor (L.) Moench, a food, fodder, and biofuel crop. Front Plant Sci 7:1287

    PubMed  PubMed Central  Google Scholar 

  • Rehman HM et al (2016) Genome-wide analysis of Family-1 UDP-glycosyltransferases in soybean confirms their abundance and varied expression during seed development. J Plant Physiol 206:87–97

    Article  CAS  Google Scholar 

  • Rehman HM, Nawaz MA, Shah ZH, Daur I, Khatoon S, Yang SH, Chung G (2017) In-depth genomic and transcriptomic analysis of five K+ transporter gene families in soybean confirm their differential expression for nodulation. Front Plant Sci 8:804

    Article  PubMed  PubMed Central  Google Scholar 

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AW, Roberts E (2004) Cellulose synthase (CesA) genes in algae and seedless plants. Cellulose 11:419–435

    Article  CAS  Google Scholar 

  • Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23:545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruprecht C et al (2016) FamNet: A framework to identify multiplied modules driving pathway diversification in plants. Plant Physiol 170:1878–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruprecht C et al (2017) Phylogenomic analysis of gene co-expression networks reveals the evolution of functional modules. Plant J 90:447–465

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Schwerdt JG et al (2015) Evolutionary dynamics of the cellulose synthase gene superfamily in grasses. Plant Physiol 168:968–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R (2006) Comprehensive splice-site analysis using comparative genomics. Nucl Acids Res 34:3955–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers F et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Li L, Sun Y-H, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor NG, Gardiner JC, Whiteman R, Turner SR (2004) Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose 11:329–338

    Article  CAS  Google Scholar 

  • The Arabidopsis Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035

    Article  CAS  PubMed  Google Scholar 

  • Wang K et al (2012a) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2012b) PIECE: a database for plant gene structure comparison and evolution. Nucl Acids Res 41:D1159–D1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Xia E-H, Gao L-Z (2016) Genome-wide analysis of WRKY family of transcription factors in common bean, Phaseolus vulgaris: chromosomal localization, structure, evolution and expression divergence. Plant Gene 5:22–30

    Article  CAS  Google Scholar 

  • Woo HR, Kim HJ, Nam HG, Lim PO (2013) Plant leaf senescence and death—regulation by multiple layers of control and implications for aging in general. J Cell Sci 126:4823–4833

    Article  CAS  PubMed  Google Scholar 

  • Worberg A, Quandt D, Barniske A-M, Löhne C, Hilu KW, Borsch T (2007) Phylogeny of basal eudicots: insights from non-coding and rapidly evolving DNA. Org Divers Evol 7:55–77

    Article  Google Scholar 

  • Yin Y, Huang J, Xu Y (2009) The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol 9:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Johns MA, Cao H, Rupani M (2014) A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of the cellulose synthase superfamily. BMC Genom 15:260

    Article  CAS  Google Scholar 

  • You FM et al (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinform 9:253

    Article  CAS  Google Scholar 

  • Young ND et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of ‘‘Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01133402)’’ Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Hwan Yang or Gyuhwa Chung.

Ethics declarations

Conflict of interest

We claim that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 1347 kb)

Supplementary file2 (XLSX 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, M.A., Lin, X., Chan, TF. et al. Characterization of Cellulose Synthase A (CESA) Gene Family in Eudicots. Biochem Genet 57, 248–272 (2019). https://doi.org/10.1007/s10528-018-9888-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-018-9888-z

Keywords

Navigation