Skip to main content

Introduction to Heart Rate Variability

  • Chapter
  • First Online:
Clinical Assessment of the Autonomic Nervous System

Abstract

Beat-to-beat intervals of cardiac sinus rhythm are not constant but show complex and continuous fluctuations called heart rate variability (HRV). Because HRV disappears with cardiac denervation by complete autonomic blockades or cardiac transplantation, HRV is thought to originate from the brain and to transfer to the heart through the autonomic nervous system. HRV includes a plenty of information not only about autonomic neural cardiac regulations but also about health state and hazard that are captured by the brain. To extract information that meets with particular purposes, various methods have been developed for the analysis of HRV. This chapter explains the basic mechanisms generating HRV and introduces the purposes and corresponding methods for HRV analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ludwig C. Beiträge zur Kenntniss des Einflusses der Respirationsbewegungen auf den Blutlauf im Aortensysteme. Arch Anat Physiol Leipzig. 1847;13:242–302.

    Google Scholar 

  2. Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985;248(1 Pt 2):H151–3.

    CAS  PubMed  Google Scholar 

  3. Hayano J, Sakakibara Y, Yamada A, Yamada M, Mukai S, Fujinami T, et al. Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am J Cardiol. 1991;67(2):199–204.

    Article  CAS  PubMed  Google Scholar 

  4. Sands KEF, Appel ML, Lilly LS, Schoen FJ, Mudge Jr GH, Cohen RJ. Power spectrum analysis of heart rate variability in human cardiac transplant recipients. Circulation. 1989;79:76–82.

    Article  CAS  PubMed  Google Scholar 

  5. Schmidt G, Malik M, Barthel P, Schneider R, Ulm K, Rolnitzky L, et al. Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet. 1999;353:1390–6.

    Article  CAS  PubMed  Google Scholar 

  6. Bauer A, Malik M, Schmidt G, Barthel P, Bonnemeier H, Cygankiewicz I, et al. Heart rate turbulence: standards of measurement, physiological interpretation, and clinical use: international society for holter and noninvasive electrophysiology consensus. J Am Coll Cardiol. 2008;52(17):1353–65.

    Article  PubMed  Google Scholar 

  7. Hayano J, Yamasaki F, Sakata S, Okada A, Mukai S, Fujinami T. Spectral characteristics of ventricular response to atrial fibrillation. Am J Physiol. 1997;273:H2811–6.

    CAS  PubMed  Google Scholar 

  8. Yamada A, Hayano J, Sakata S, Okada A, Mukai S, Ohte N, et al. Reduced ventricular response irregularity is associated with increased mortality in patients with chronic atrial fibrillation. Circulation. 2000;102:300–6.

    Article  CAS  PubMed  Google Scholar 

  9. Hayano J, Ishihara S, Fukuta H, Sakata S, Mukai S, Ohte N, et al. Circadian rhythm of atrioventricular conduction predicts long-term survival in patients with chronic atrial fibrillation. Chronobiol Int. 2002;19(3):633–48.

    Article  PubMed  Google Scholar 

  10. Sato K, Yamasaki F, Furuno T, Hamada T, Mukai S, Hayano J, et al. Rhythm-independent feature of heart rate dynamics common to atrial fibrillation and sinus rhythm in patients with paroxysmal atrial fibrillation. J Cardiol. 2003;42(6):269–76.

    PubMed  Google Scholar 

  11. Watanabe E, Kiyono K, Hayano J, Yamamoto Y, Inamasu J, Yamamoto M, et al. Multiscale entropy of the heart rate variability for the prediction of an ischemic stroke in patients with permanent atrial fibrillation. PLoS One. 2015;10(9):e0137144.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Berger RD, Saul JP, Cohen RJ. Transfer function analysis of autonomic regulation. I: canine atrial rate response. Am J Physiol. 1989;256:H142–52.

    CAS  PubMed  Google Scholar 

  13. Cooley JW, Turkey JW. An algorithm for the machine calculation of complex Fourier series. Math Comput. 1965;19:297–301.

    Article  Google Scholar 

  14. Akaike H. Power spectrum estimation through autoregressive model fitting. Ann Inst Stat Math. 1969;21:407–19.

    Article  Google Scholar 

  15. Sayers BM. Analysis of heart rate variability. Ergonomics. 1973;16:17–32.

    Article  CAS  PubMed  Google Scholar 

  16. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213:220–2.

    Article  CAS  PubMed  Google Scholar 

  17. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59:178–93.

    Article  CAS  PubMed  Google Scholar 

  18. Hayano J, Yasuma F. Hypothesis: respiratory sinus arrhythmia is an intrinsic resting function of cardiopulmonary system. Cardiovasc Res. 2003;58(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  19. Penaz J. Mayer waves: history and methodology. Automedica. 1978;2:135–41.

    Google Scholar 

  20. Madwed JB, Albrecht P, Mark RG, Cohen RJ. Low-frequency oscillation in arterial pressure and heart rate: a simple computer model. Am J Physiol. 1991;256:H1573–9.

    Google Scholar 

  21. Moak JP, Goldstein DS, Eldadah BA, Saleem A, Holmes C, Pechnik S, et al. Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm: Off J Heart Rhythm Soc. 2007;4(12):1523–9.

    Article  Google Scholar 

  22. Yamamoto Y, Nakamura Y, Sato H, Yamamoto M, Kato K, Hughson RL. On the fractal nature of heart rate variability in humans: effects of vagal blockade. Am J Physiol. 1995;269:R830–7.

    CAS  PubMed  Google Scholar 

  23. Saul JP, Albrecht P, Berger RJ. Analysis of long term heart rate variability: methods, 1/f scaling and implications. Comput Cardiol. 1987;14:419–22.

    Google Scholar 

  24. Camm AJ, Malik M, Bigger Jr JT, Breithardt G, Cerutti S, Cohen RJ, et al. Task force of the European society of cardiology and the north American society of pacing and electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93(5):1043–65.

    Article  Google Scholar 

  25. Huikuri HV, Mäkikallio TH, Peng CK, Goldberger AL, Hintze U, Moller M, et al. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation. 2000;101:47–53.

    Article  CAS  PubMed  Google Scholar 

  26. Bauer A, Kantelhardt JW, Barthel P, Schneider R, Makikallio T, Ulm K, et al. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet. 2006;367(9523):1674–81.

    Article  PubMed  Google Scholar 

  27. Hayano J, Barros AK, Kamiya A, Ohte N, Yasuma F. Assessment of pulse rate variability by the method of pulse frequency demodulation. Biomed Eng OnLine. 2005;4:62.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Arai Y, Saul JP, Albrecht P, Hartley LH, Lilly LS, Cohen RJ, et al. Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol. 1989;256:H132–41.

    CAS  PubMed  Google Scholar 

  29. Yamamoto Y, Hughson RL, Peterson JC. Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol. 1991;71:1136–42.

    CAS  PubMed  Google Scholar 

  30. Sakakibara M, Takeuchi S, Hayano J. Effect of relaxation training on cardiac parasympathetic tone. Psychophysiology. 1994;31:223–8.

    Article  CAS  PubMed  Google Scholar 

  31. Sakakibara M, Kanematsu T, Yasuma F, Hayano J. Impact of real-world stress on cardiorespiratory resting function during sleep in daily life. Psychophysiology. 2008;45(4):667–70.

    Article  PubMed  Google Scholar 

  32. Hayano J, Sakakibara Y, Yamada M, Kamiya T, Fujinami T, Yokoyama K, et al. Diurnal variations in vagal and sympathetic cardiac control. Am J Physiol. 1990;258:H642–6.

    CAS  PubMed  Google Scholar 

  33. Hayano J, Yamada M, Sakakibara Y, Fujinami T, Yokoyama K, Watanabe Y, et al. Short- and long-term effects of cigarette smoking on heart rate variability. Am J Cardiol. 1990;65:84–8.

    Article  CAS  PubMed  Google Scholar 

  34. Niedermaier ON, Smith ML, Beightol LA, Zukowska-Grojec Z, Goldstein DS, Eckberg DL. Influence of cigarette smoking on human autonomic function. Circulation. 1993;88:562–71.

    Article  CAS  PubMed  Google Scholar 

  35. Pincus SM, Goldberger AL. Physiological time-series analysis: what does regularity quantify. Am J Physiol. 1994;266:H1643–56.

    CAS  PubMed  Google Scholar 

  36. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5(1):82–7. doi:10.1063/1.166141.

    Article  CAS  PubMed  Google Scholar 

  37. Iyengar N, Peng CK, Morin R, Goldberger AL, Lipsitz LA. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol. 1996;271:R1078–84.

    CAS  PubMed  Google Scholar 

  38. Kiyono K, Hayano J, Watanabe E, Struzik ZR, Yamamoto Y. Non-Gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure. Heart Rhythm. 2008;5(2):261–8.

    Article  PubMed  Google Scholar 

  39. Huikuri HV, Mäkikallio TH, Airaksinen KEJ, Seppänen T, Puukka P, Räihä IJ, et al. Power-law relationship of heart rate variability as a predictor of mortality in the elderly. Circulation. 1998;97:2031–6.

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki M, Hiroshi T, Aoyama T, Tanaka M, Ishii H, Kisohara M, et al. Nonlinear measures of heart rate variability and mortality risk in hemodialysis patients. Clin J Am Soc Nephrol. 2012;7(9):1454–60. doi:10.2215/CJN.09430911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hayano J, Kiyono K, Struzik ZR, Yamamoto Y, Watanabe E, Stein PK, et al. Increased non-gaussianity of heart rate variability predicts cardiac mortality after an acute myocardial infarction. Front Physiol. 2011;2:65.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hayano J, Taylor JA, Yamada A, Mukai S, Hori R, Asakawa T, et al. Continuous assessment of hemodynamic control by complex demodulation of cardiovascular variability. Am J Physiol. 1993;264:H1229–38.

    CAS  PubMed  Google Scholar 

  43. Hayano J, Taylor JA, Mukai S, Okada A, Watanabe Y, Takata K, et al. Assessment of frequency shifts in R-R interval variability and respiration with complex demodulation. J Appl Physiol. 1994;77:2879–88.

    CAS  PubMed  Google Scholar 

  44. Lipsitz LA, Hayano J, Sakata S, Okada A, Morin RJ. Complex demodulation of cardiorespiratory dynamics preceding vasovagal syncope. Circulation. 1998;98:977–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichiro Hayano M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Hayano, J. (2017). Introduction to Heart Rate Variability. In: Iwase, S., Hayano, J., Orimo, S. (eds) Clinical Assessment of the Autonomic Nervous System. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56012-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56012-8_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56010-4

  • Online ISBN: 978-4-431-56012-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics