Skip to main content
Log in

Genetic Determinism of Fearfulness, General Activity and Feeding Behavior in Chickens and Its Relationship with Digestive Efficiency

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The genetic relationships between behavior and digestive efficiency were studied in 860 chickens from a cross between two lines divergently selected on digestive efficiency. At 2 weeks of age each chick was video-recorded in the home pen to characterize general activity and feeding behavior. Tonic immobility and open-field tests were also carried out individually to evaluate emotional reactivity (i.e. the propensity to express fear responses). Digestive efficiency was measured at 3 weeks. Genetic parameters of behavior traits were estimated. Birds were genotyped on 3379 SNP markers to detect QTLs. Heritabilities of behavioral traits were low, apart from tonic immobility (0.17–0.18) and maximum meal length (0.14). The genetic correlations indicated that the most efficient birds fed more frequently and were less fearful. We detected 14 QTL (9 for feeding behavior, 3 for tonic immobility, 2 for frequency of lying). Nine of them co-localized with QTL for efficiency, anatomy of the digestive tract, feed intake or microbiota composition. Four genes involved in fear reactions were identified in the QTL for tonic immobility on GGA1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agnvall B, Jongren M, Strandberg E, Jensen P (2012) Heritability and Genetic Correlations of Fear-Related Behaviour in Red Junglefowl-Possible Implications for Early Domestication. PLoS One 7(4):e35162. doi:10.1371/journal.pone.0035162

    Article  PubMed  PubMed Central  Google Scholar 

  • Albers GAA (1998) Future trends in poultry breeding. In: WPSA (ed) 10th European poultry conference jerusalem, pp 16–20

  • Alcock J, Maley CC, Aktipis CA (2014) Is eating behavior manipulated by the gastrointestinal microbiota? evolutionary pressures and potential mechanisms. Bioessays 36(10):940–949. doi:10.1002/bies.201400071

    Article  PubMed  PubMed Central  Google Scholar 

  • Altan O, Oguz I, Akbas Y, Aksit M (2004) Genetic variability of residual feed consumption (RFC) and its relationships with some production traits and fear response in Japanese quail hens (Coturnic coturnix japonica). Archiv Geflugelkd 68(5):223–229

    Google Scholar 

  • Ankra-Badu GA, Shriner D, Le Bihan-Duval E, Mignon-Grasteau S, Pitel F, Beaumont C, Duclos MJ, Simon J, Porter TE, Vignal A, Cogburn LA, Allison DA, Yi N, Aggrey SE (2010) Mapping main, epistatic and sex-specific QTL for body composition in a chicken population divergently selected for low or high growth rate. BMC Genom 11:107. doi:10.1111/j.1365-2052.2009.02017.x

    Article  Google Scholar 

  • Balakathiresan NS, Chandran R, Bhomia M, Jia M, Li H, Maheshwari RK (2014) Serum and amygdala microRNA signatures of posttraumatic stress: fear correlation and biomarker potential. J Psychiatr Res 57:65–73. doi:10.1016/j.jpsychires.2014.05.020

    Article  PubMed  Google Scholar 

  • Bessei W (2006) Welfare of broilers: a review. W Poult Sci J 62(3):455–466

    Article  Google Scholar 

  • Blaya C, Moorjani P, Salum GA, Goncalves L, Weiss LA, Leistner-Segal S, Manfro GG, Smoller JW (2009) Preliminary evidence of association between EFHC2, a gene implicated in fear recognition, and harm avoidance. Neurosci Lett 452(1):84–86. doi:10.1016/j.neulet.2009.01.036

    Article  PubMed  Google Scholar 

  • Braastad BO, Katle J (1989) Behavioral differences between laying hen populations selected for high and low efficiency of feed utilization. Br Poult Sci 30(3):533–544

    Article  PubMed  Google Scholar 

  • Buitenhuis AJ, Rodenburg TB, Siwek M, Cornelissen SJB, Nieuwland MGB, Crooijmans RPMA, Groenen MAM, Koene P, Bovenhuis H, van der Poel JJ (2004) Identification of QTLS involved in open-field behavior in young and adult laying hens. Behav Genet 34(3):325–333

    Article  PubMed  Google Scholar 

  • Campo JL, Gil MG, Davila SG, Munoz I (2006) Genetic and phenotypic correlation between fluctuating asymmetry and two measurements of fear and stress in chickens. Appl Anim Behav Sci 102(1–2):53–64. doi:10.1016/j.applanim.2006.03.001

    Google Scholar 

  • Campos RLR, Nones K, Ledur MC, Moura ASAMT, Pinto LFB, Ambo M, Boschiero C, Ruy DC, Baron EE, Ninov K, Altenhofen CAB, Silva RAMS, Rosario MF, Burt DW, Coutinho LL (2009) Quantitative trait loci associated with fatness ina broiler-layer cross. Anim Genet 40(5):729–736. doi:10.1111/j.1365-2052.2009.01910.x

    Article  PubMed  Google Scholar 

  • Carlborg Ö, Kerje S, Schütz K, Jacobsson L, Jensen P, Andersson L (2003) A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Res 13:413–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlborg R, Hocking PM, Burt DW, Haley CS (2004) Simultaneous mapping of epistatic QTL in chickens reveals clusters of QTL pairs with similar genetic effects on growth. Genet Res 83(3):197–209

    Article  PubMed  Google Scholar 

  • Craig JV, Muir WM (1989) Fearful and associated responses of caged white Leghorn hens: genetic parameters estimates. Poult Sci 68:1040–1046

    Article  Google Scholar 

  • De Verdal H, Mignon-Grasteau S, Jeulin C, Le Bihan-Duval E, Leconte M, Mallet S, Martin C, Narcy A (2010) Digestive tract measurements and histological adaptation in broiler lines divergently selected for digestive efficiency. Poult Sci 89(9):1955–1961. doi:10.3382/ps.2010-813

    Article  PubMed  Google Scholar 

  • Dorshorst BJ, Siegel PB, Ashwell CM (2011) Genomic regions associated with antibody response to sheep red blood cells in the chicken. Anim Genet 42(3):300–308. doi:10.1111/j.1365-2052.2010.02146.x

    Article  PubMed  Google Scholar 

  • Elsen JM, Mangin B, Goffinet B, Boichard D, Le Roy P (1999) Alternative models for QTL detection in livestock.I. general introduction. Genet Sel Evol 31(3):213–224

    Article  PubMed Central  Google Scholar 

  • Faure JM, Folmer JC (1975) Etude génétique de l’activité précoce en open-field du jeune poussin. Ann Génét Sél Anim 7:123–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Faure JM, Jones RB, Bessei W (1983) Fear and social motivation in open-field behavior of the domestic chick. A theoretical consideration. Biol Behav 8:103–116

    Google Scholar 

  • Frésard L, Leroux S, Dehais P, Servin B, Gilbert H, Bouchez O, Klopp C, Cabau C, Vignoles F, Fève K, Ricros A, Gourichon D, Diot C, Richard S, Leterrier C, Beaumont C, Vignal A, Minvielle F, Pitel F (2012) Fine mapping of complex traits in non-model species: using next generation sequencing and advanced intercross lines in Japanese quail. BMC Genom 13:551. doi:10.1186/1471-2164-13-551

    Article  Google Scholar 

  • Fu W, Dekkers JC, Lee WR, Abasht B (2015) Linkage disequilibrium in crossbred and pure line chickens. Genet Sel Evol 47:11. doi:10.1186/s12711-015-0098-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabriel I, Guardia S, Konsak B, Leconte M, Rideaud P, Moreau-Vauzelle C, Mignon-Grasteau S (2011) Comparaison du microbiote bactérien digestif de poulets sélectionnés sur leur énergie métabolisable In: WPSA (ed) 11th Journées de la recherche avicole, Tours, France, 760–764

  • Gao Y, Du ZQ, Wei WH, Yu XJ, Deng XM, Feng CG, Fei JD, Li N, Hu XX (2009) Mapping quantitative trait loci regulating chicken body composition traits. Anim Genet 40(6):952–954. doi:10.1111/j.1365-2052.2009.01911.x

    Article  PubMed  Google Scholar 

  • Gilbert H, Le Roy P, Moreno C, Robelin D, Elsen JM (2008) QTLMAP, a software for QTL detection in outbred populations. Ann Hum Genet 72:694

    Google Scholar 

  • Grams V, Bogelein S, Grashorn MA, Bessei W, Bennewitz J (2015) Quantitative genetic analysis of traits related to fear and feather pecking in laying hens. Behav Genet 45(2):228–235. doi:10.1007/s10519-014-9695-1

    Article  PubMed  Google Scholar 

  • Groenen MAM, Wahlberg P, Foglio M, Cheng HH, Megens HJ, Crooijmans RPMA, Besnier F, Lathrop M, Muir WM, Wong GKS, Gut I, Andersson L (2009) A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Res 19(3):510–519. doi:10.1101/gr.086538.108

    Article  PubMed  PubMed Central  Google Scholar 

  • Groeneveld E, Kovac M, Mielenz N (2010) VCE User’s Guide and reference manual version 6.0

  • Hemsworth PH, Coleman GJ, Barnett JL, Jones RB (1994) Behavioural responses to humans and the productivity of commercial broiler chickens. Appl Anim Behav Sci 41:101–114. doi:10.1016/0168-1591(94)90055-8

    Article  Google Scholar 

  • Hong KW, Hayasaka I, Murayama Y, Ito S, Inoue-Murayama M (2008) Comparative analysis of monoamine oxidase intronic polymorphisms in primates. Gene 418(1–2):9–14. doi:10.1016/j.gene.2008.03.014

    Article  PubMed  Google Scholar 

  • Howie JA, Tolkamp BJ, Avendano S, Kyriazakis I (2009) The structure of feeding behavior in commercial broiler lines selected for different growth rates. Poult Sci 88(6):1143–1150. doi:10.3382/ps.2008-00441

    Article  PubMed  Google Scholar 

  • Howie JA, Avendano S, Tolkamp BJ, Kyriazakis I (2011) Genetic parameters of feeding behavior traits and their relationship with live performance traits in modern broiler lines. Poult Sci 90(6):1197–1205. doi:10.3382/ps.2010-01313

    Article  PubMed  Google Scholar 

  • Hulsken S, Martin A, Mohajeri MH, Homberg JR (2013) Food-derived serotonergic modulators: effects on mood and cognition. Nutr Res Rev 26(2):223–234. doi:10.1017/S0954422413000164

    Article  PubMed  Google Scholar 

  • Jennen DGJ, Vereijken AIJ, Bovenhuis H, Crooijmans RPMA, Veenendaal A, van der Poel JJ, Groenen MAM (2004) Detection and localization of quantitative trait loci affecting fatness in broilers. Poult Sci 83:295–301

    Article  PubMed  Google Scholar 

  • Johnsson M, Williams M, Jensen P, Wright D (2016) Genetical genomics of behavior: a novel chicken genomic model for anxiety behavior. Genetics 202(1):327–340. doi:10.1534/genetics.115.179010

    Article  PubMed  Google Scholar 

  • Jones RB (1996) Fear and adaptability in poultry: insights, implications and imperatives. W Poult Sci J 52(2):131–174

    Article  Google Scholar 

  • Kerje S, Carlborg Ö, Jacobsson L, Schûtz K, Hartmann C, Jensen P, Andersson L (2003) The twofold difference in adult size between the red junglefowl and white leghorn chickens is largely explained by a limited number of QTLs. Anim Genet 34(4):264–274

    Article  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121(1):185–199

    PubMed  PubMed Central  Google Scholar 

  • Le Roy P, Elsen JM, Boichard D, Mangin M, Bidanel JP, Goffinet B (1998) An algorithm for QTL detection in mixture of full and half sib families. In: UoN England (ed) 6th World congress of genetics applied to livestock. University of New England, Armidale, pp 257–260

    Google Scholar 

  • Mignon-Grasteau S, Muley N, Bastianelli D, Gomez J, Péron A, Sellier N, Millet N, Besnard J, Hallouis JM, Carré B (2004) Heritability of digestibilities and divergent selection for digestion ability in growing chicks fed a wheat diet. Poult Sci 83(6):860–867

    Article  PubMed  Google Scholar 

  • Mignon-Grasteau S, Juin H, Sellier N, Bastianelli D, Gomez J, Carré B (2010a) Genetic parameters of wheat- or corn-based diets in chickens. In German society of animal science (ed) 9th World cong Appl Livest Prod, Leipzig, 4 pp

  • Mignon-Grasteau S, Lafeuille O, Dourmad JY, Hillion S, Bastianelli D, Arnould C, Phocas F, Carré B (2010b) Consequences of selection for digestibility on feeding activity and excretion. In: WPSA (ed) 13th European poultry conference, Tours, France, 4 pp

  • Mignon-Grasteau S, Rideau N, Gabriel I, Chantry-Darmon C, Boscher MY, Sellier N, Chabault M, Le Bihan-Duval E, Narcy A (2015a) Detection of QTL controlling feed efficiency and excretion in chicken fed a wheat-based diet. Genet Sel Evol 47:74. doi:10.1186/s12711-015-0156-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Mignon-Grasteau S, Narcy A, Rideau N, Chantry-Darmon C, Boscher MY, Sellier N, Chabault M, Konsak-Ilievski B, Le Bihan-Duval E, Gabriel I (2015b) Impact of selection for digestive efficiency on microbiota composition in the chicken. PLoS One 10(8):e0135488. doi:10.1371/journal.pone.0135488

    Article  PubMed  PubMed Central  Google Scholar 

  • Mignon-Grasteau S, Chantry-Darmon C, Boscher M-Y, Sellier N, Chabault-Dhuit M, Le Bihan-Duval E, Narcy A (2016) Genetic determinism of bone and mineral metabolism in meat-type chickens: a QTL mapping study. Bone Reports 5:43–50

    Article  Google Scholar 

  • Mills A, Faure JM (1991) Divergent selection for duration of tonic immobility and social reinstatement behavior in japanese quail (Coturnix coturnix japonica) chicks. J Comp Psychol 105(1):25–38

    Article  PubMed  Google Scholar 

  • Nadaf J, Pitel F, Gilbert H, Duclos MJ, Vignoles F, Beaumont C, Vignal A, Porter TE, Cogburn LA, Aggrey SE, Simon J, Le Bihan-Duval E (2009) QTL for several metabolic traits map to loci controlling growth and body womposition in an F2 intercross between high- and low-growth chicken lines. Physiol Genom 38(3):241–249. doi:10.1152/physiolgenomics.90384.2008

    Article  Google Scholar 

  • Nassar MK, Goraga ZS, Brockmann GA (2012) Quantitative trait loci segregating in crosses between New Hampshire and white leghorn chicken lines: II. muscle weight and carcass composition. Anim Genet 43(6):739–745. doi:10.1111/j.1365-2052.2012.02344.x

    Article  PubMed  Google Scholar 

  • Navarro P, Visscher PM, Knott SA, Burt DW, Hocking PM, Hale CS (2005) Mapping of quantitative trait loci affecting organ weights and blood variables in a broiler layer cross. Br Poult Sci 46(4):430–442

    Article  PubMed  Google Scholar 

  • Nol E, Cheng K, Nichols C (1996) Heritability and phenotypic correlations of behaviour and dominance rank of Japanese quail. Anim Behav 52:813–820

    Article  Google Scholar 

  • Ormsbee HS 3rd, Fondacaro JD (1985) Action of serotonin on the gastrointestinal tract. Proc Soc Exp Biol Med 178(3):333–338

    Article  PubMed  Google Scholar 

  • Pelhaitre A, Mignon-Grasteau S, Bertin A (2012) Selection for wheat digestibility affects emotionality and feeding behaviours in broiler chicks. Appl Anim Behav Sci 139(1/2):114–122. doi:10.1016/j.applanim.2012.03.007

    Article  Google Scholar 

  • Podisi BK, Knott SA, Burt DW, Hocking PM (2013) Comparative analysis of quantitative trait loci for body weight, growth rate and growth curve parameters from 3 to 72 weeks of age in female chickens of a broiler-layer cross. BMC Genet 14:22. doi:10.1186/1471-2156-14-22

    Article  PubMed  PubMed Central  Google Scholar 

  • Recoquillay J, Leterrier C, Calandreau L, Bertin A, Pitel F, Gourichon D, Vignal A, Beaumont C, Le Bihan-Duval E, Arnould C (2014) Evidence of phenotypic and genetic relationships between sociality, emotional reactivity and production traits in japanese quail. PLoS One 8(12):e82157. doi:10.1371/journal.pone.0082157

    Article  Google Scholar 

  • Reyer H, Hawken R, Murani E, Ponsuksili S, Wimmers K (2015) The genetics of feed conversion efficiency traits in a commercial broiler line. Sci Rep 5:16387. doi:10.1038/srep16387

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards MP (2003) Genetic regulation of feed intake and energy balance in poultry. Poult Sci 82(6):907–916

    Article  PubMed  Google Scholar 

  • Rodenburg TB, Buitenhuis AJ, Ask B, Uitdehaag KA, Koene P, van der Poel JJ, Bovenhuis H (2003) Heritability of feather pecking and open-field response of laying hens at two different ages. Poult Sci 82:861–867

    Article  PubMed  Google Scholar 

  • Rougière N, Malbert CH, Rideau N, Cognié J, Carré B (2012) Comparison of gizzard activity between chickens from genetic D+ and D− lines selected for divergent digestion efficiency. Poult Sci 91(2):460–467. doi:10.3382/ps.2011-01494

    Article  PubMed  Google Scholar 

  • Savory CJ, Hodgkiss JP (1984) Influence of vagotomy in domestic fowls on feeding activity, food passage, digestibility and satiety effects of two peptides. Physiol Behav 33:937–944

    Article  PubMed  Google Scholar 

  • Schreiweis MA, Hester PY, Moody DE (2005) Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens. Genet Sel Evol 37:677–698

    Article  PubMed  PubMed Central  Google Scholar 

  • Schütz KE, Kerje S, Jacobsson L, Forkman B, Carlborg O, Andersson L, Jensen P (2004) Major growth QTLs in fowl are related to fearful behavior: possible genetic links between fear responses and production traits in a red junglefowl x white leghorn intercross. Behav Genet 34:121–130. doi:10.1023/B:BEGE.0000009481.98336.fc

    Article  PubMed  Google Scholar 

  • Sekiguchi M, Zushida K, Yoshida M, Maekawa M, Kamichi S, Sahara Y, Yuasa S, Takeda S, Wada K (2009) A deficit of brain dystrophin impairs specific amygdala GABAergic transmission and enhances defensive behaviour in mice. Brain 132(1):124–135. doi:10.1093/brain/awn253

    Article  PubMed  Google Scholar 

  • Sewalem A, Morrice DM, Law A, Windsor D, Haley CS, Ikeobi CON, Burt DW, Hocking PM (2002) Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross. Poult Sci 81(12):1775–1781

    Article  PubMed  Google Scholar 

  • Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Shumyatsky GP, Malleret G, Shin RM, Takizawa S, Tully K, Tsvetkov E, Zakharenko SS, Joseph J, Vronskaya S, Yin D, Schubart UK, Kandel ER, Bolshakov VY (2005) Stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell 123(4):697–709. doi:10.1016/j.cell.2005.08.038

    Article  PubMed  Google Scholar 

  • Siegel PB, Cherry JA, Dunnington EA (1984) Feeding behaviour and feed consumption in chickens selected for body weight. Ann Agric Fenn 232:47–252

    Google Scholar 

  • Skinner-Noble DO, Jones RB, Teeter RG (2003) Components of feed efficiency in broiler breeding stock: is improved feed conversion associated with increased docility and lethargy in broilers? Poult Sci 82(4):532–537

    Article  PubMed  Google Scholar 

  • Stanley D, Hughes RJ, Geier MS, Moore RJ (2016) Bacteria within the gastrointestinal tract microbiota correlated with improved growth and feed conversion: challenges presented for the identification of performance enhancing probiotic bacteria. Front Microbiol 7:187. doi:10.3389/fmicb.2016.00187

    Article  PubMed  PubMed Central  Google Scholar 

  • Talaty PN, Katanbaf MN, Hester PY (2010) Bone mineralization in male commercial broilers and its relationship to gait score. Poult Sci 89(2):342–348. doi:10.3382/ps.2009-00382

    Article  PubMed  Google Scholar 

  • Tilquin P, Barrow PA, Marly J, Pitel F, Plisson-Petit F, Velge P, Vignal A, Baret PV, Bumstead N, Beaumont C (2005) A genome scan for quantitative trait loci affecting the salmonella carrier-state in the chicken. Genet Sel Evol 37(5):539–561

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran TS, Narcy A, Carré B, Gabriel I, Rideau N, Gilbert H, Demeure O, Bed’Hom B, Chantry-Darmon C, Boscher MY, Bastianelli D, Sellier N, Chabault M, Calenge F, Le Bihan-Duval E, Beaumont C, Mignon-Grasteau S (2014) Detection of QTL controlling digestive efficiency and anatomy of the digestive tract in chicken fed a wheat-based diet. Genet Sel Evol 46:25. doi:10.1186/s12711-015-0156-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Goor A, Bolek KJ, Ashwell CM, Persia ME, Rotschild MF, Schmidt CJ, Lamont SJ (2015) Identification of quantitative trai loci for body temperature, body weight, breast yield and digestibility in an advanced intercross line of chickens under heat stress. Genet Sel Evol 47:96. doi:10.1186/s12711-015-0176-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss LA, Purcell S, Waggoner S, Lawrence K, Spektor D, Daly MJ, Sklar P, Skuse D (2007) Identification of EFHC2 as a quantitative trait locus for fear recognition in turner syndrome. Hum Mol Genet 16(1):107–113

    Article  PubMed  Google Scholar 

  • Yuan J, Wang K, Yi G, Ma M, Dou T, Sun C, Qu LJ, Shen M, Qu L, Yang N (2015) Genome-wide association studies for feed intake and efficiency in two laying periods of chickens. Genet Sel Evol 47:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, Lamont SJ (2006) Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. I. growth and average daily gain. Poult Sci 85(10):1700–1711

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the UE PEAT experimental unit and the URA and PRC research units at INRA for their technical help in animal rearing and behavior analysis.

Funding

This research was funded by the National Agency for Research in France, Contract ANR-09-GENM-007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Mignon-Grasteau.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical Approval

The experiment was conducted according to the guidelines of the French Ministry of Agriculture and European regulations concerning animal experimentation, including Authorization N°37–100 from the French Ministry of Agriculture. The Experimental Unit where birds were kept is registered by the Ministry of Agriculture for animal experimentation under License Number C-37-175-1. Measurement of digestive efficiency in individual cages, blood sampling procedures for genotyping and euthanasia procedures by injection of pentobarbital were approved by the Ethics Committee for Animal Experimentation of Val de Loire (00886.02 and 01047.02). This Ethics Committee is registered by the National Committee under number C2EA-19. The personal License Number from the French Veterinary Service for this study was 548.

Additional information

Edited by Stephen Maxson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mignon-Grasteau, S., Chantry-Darmon, C., Boscher, MY. et al. Genetic Determinism of Fearfulness, General Activity and Feeding Behavior in Chickens and Its Relationship with Digestive Efficiency. Behav Genet 47, 114–124 (2017). https://doi.org/10.1007/s10519-016-9807-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-016-9807-1

Keywords

Navigation