Skip to main content
Log in

A probabilistic seismic hazard assessment for the Turkish territory: part II—fault source and background seismicity model

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Over the years, several local and regional seismic hazard studies have been conducted for the estimation of the seismic hazard in Turkey using different statistical processing tools for instrumental and historical earthquake data and modeling the geologic and tectonic characteristics of the region. Recently developed techniques, increased knowledge and improved databases brought the necessity to review the national active fault database and the compiled earthquake catalogue for the development of a national earthquake hazard map. A national earthquake strategy and action plan were conceived and accordingly with the collaboration of the several institutions and expert researchers, the Revision of Turkish Seismic Hazard Map Project (UDAP-Ç-13-06) was initiated, and finalized at the end of 2014. The scope of the project was confined to the revision of current national seismic hazard map, using the state of the art technologies and knowledge of the active fault, earthquake database, and ground motion prediction equations. The following two seismic source zonation models are developed for the probabilistic earthquake hazard analysis: (1) Area source model, (2) Fault and spatial smoothing seismic source model (FSBCK). In this study, we focus on the development and the characterization of the Fault Source model, the background spatially smoothed seismicity model and intrinsic uncertainty on the earthquake occurrence-rates-estimation. Finally, PSHA results obtained from the fault and spatial smoothed seismic source model are presented for 43, 72, 475 and 2475 years return periods (corresponding to 69, 50, 10, and 2% probability of exceedance in 50 years) for PGA and 5% damped spectral accelerations at 0.2 and 1.0 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • Akkar S, Çağnan Z (2010) A local ground-motion predictive model for Turkey and its comparison with other regional and global ground-motion models. Bull Seismol Soc Am 100(6):2978–2995

    Article  Google Scholar 

  • Akkar S, Sandıkkaya MA, Bommer JJ (2014) Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthquake Eng 12:359–387

    Article  Google Scholar 

  • Akkar S, Kale Ö, Yakut A, Ceken U (2017) Ground-motion characterization for the probabilistic seismic hazard assessment in Turkey in Bulletin of Earthquake Engineering. doi:10.1007/s10518-017-0101-2

  • Aktuğ B, Nocquet JM, Cingöz A, Parsons B, Erkan Y, England P, Lenk O, Gürdal MA, Kilicoglu A, Akdeniz H, Tekgül A (2009) Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block-like behavior. J Geophys Res 114. doi: 10.1029/2008JB006000. ISSN: 0148-0227

  • Aktuğ B, Dikmen Ü, Doğru A, Özener H (2013a) Slip rates near Karlıova Triple Junction by GPS observations. J Geodyn 67:21–29

    Article  Google Scholar 

  • Aktuğ B, Parmaksız E, Kurt M, Lenk O, Kılıçoğlu A, Gürdal MA, Özdemir S (2013b) Deformation of Central Anatolia: GPS implications. J Geodyn 67:78–96

    Article  Google Scholar 

  • Albini P, Musson RMW, Rovida A, Locati M, Gomez Capera AA, Viganò D (2014) The global earthquake history. Earthq Spectra 30(2):607–624. doi:10.1193/122013EQS297

    Article  Google Scholar 

  • Anderson JG, Luco JE (1983) Consequences of slip rate constants on earthquake occurene relations. Bull Seismol Soc Am 73:471–496

    Google Scholar 

  • Angelier J, Tarantola A, Manoussis S, Valette B (1982) Inversion of field data in fault tectonics to obtain the regional stress. Geophys J R Astron Soc 69:607–621

    Article  Google Scholar 

  • Assatourians K, Atkinson GM (2013) EqHaz: an open-source probabilistic seismic-hazard code based on the Monte Carlo simulation approach. Seismol Res Lett 84(3):516–524

    Article  Google Scholar 

  • Atkinson GM, Boore GM (2003) Empirical ground-motion relationships for subduction-zone earthquakes and their application to Cascadia and other regions. Bull Seismol Soc Am 93:1703–1729

    Article  Google Scholar 

  • Azak TE (2016) The ECAT software package to analyze earthquake catalogues. In: International science and technology conference, 13–15 July, Vienna, Austria

  • Azak TE, Kalafat D, Şeşetyan K, Demircioğlu MB (2016) A sensitivity analysis on declustering methods using Turkish earthquake catalogue. Bull Earthq Eng (under review)

  • Barka AA (1992) The North Anatolian fault. Ann Tecton 6:174–195

    Google Scholar 

  • Basili R, Valensise G, Vannoli P, Burrato P, Fracassi U, Mariano S, Tiberti MM, Boschi E (2008) The database of individual seismogenic sources (DISS), version 3: summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics 453:20–43. doi:10.1016/j.tecto.2007.04.014

    Article  Google Scholar 

  • Basili R, Kastelic V, Demircioglu MB, Garcia Moreno D, Nemser ES, Petricca P, Sboras SP, Besana-Ostman GM, Cabral J, Camelbeeck T, Caputo R, Danciu L, Domac H, Fonseca J, García-Mayordomo J, Giardini D, Glavatovic B, Gulen L, Ince Y, Pavlides S, Sesetyan K, Tarabusi G, Tiberti MM, Utkucu M, Valensise G, Vanneste K, Vilanova S, Wössner J (2013) The European database of Seismogenic faults (EDSF) compiled in the framework of the Project SHARE. http://diss.rm.ingv.it/share-edsf/. doi: 10.6092/INGV.IT-SHARE-EDSF

  • Bender B (1983) Maximum likelihood estimation of b-values for magnitude grouped data. Bull Seismol Soc Am 73:831–851

    Google Scholar 

  • Bungum H (2007) Numerical modelling of fault acitivities. Comput Geosci 33:808–820

    Article  Google Scholar 

  • Bungum H, Lindholm C, Faleide JJ (2005) Postglacial seismicity offshore mid-Norway with emphasis on spatio-temporal-magnitudal variations. Mar Geol 22:137–148

    Article  Google Scholar 

  • Burchfiel BC, Kıng RW, Todosov A, Kotzev V, Durmurdzanov N, Serafimovski T, Nurce B (2006) GPS results for Macedonia and its importance for the tectonics of the Southern Balkan extensional regime. Tectonophysics 413:239–248

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2006) Next generation attenuation (NGA) empirical ground motion models: Can they be used in Europe? In: Proceedings of the first European conference on earthquake engineering and seismology, Paper No. 458

  • Caputo R, Chatzipetros A, Pavlides S, Sboras S (2012a) The Greek database of seismogenic sources (GreDaSS): state-of-the-art for northern Greece. Ann Geophys 55(5):859–894. doi:10.4401/ag-5168

    Google Scholar 

  • Caputo R, Iordanidou K, Minarelli L, Papathanassiou G, Poli M, Rapti-Caputo D, Sboras S, Stefani M, Zanferrari A (2012b) Geological evidence of pre seismic events, Emilia-Romagna, Italy. Ann Geophys. doi:10.4401/ag-6148

    Google Scholar 

  • Chiou BSJ, Youngs RR (2008) An NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 24(1):173–215

    Article  Google Scholar 

  • Console R, Murru M (2001) A simple and testable model for earthquake clustering. J Geophys Res 106:8699–8711

    Article  Google Scholar 

  • Danciu L, Sesetyan K, Demircioğlu MB, Elias A, Gülen M, Zare M, Rovida A, Basili R, Stucchi M, Tsereteli N, Khan A, Kharakhanian A, Yalçın H, Erdik M, Giardini D (2016) The 2014 earthquake model of the Middle East: seismogenic sources. Bull Earthq Eng. doi:10.1007/s10518-016-9989-1

    Google Scholar 

  • Demircioglu MB, Sesetyan K, Durukal E, Erdik M (2007) Assessment of earthquake hazard in Turkey. In: Proceedings of the 4th international conference on earthquake geotechnical engineering, June 2007, Thessaloniki, Greece

  • DLH (Ministry of Transport and Railways, Ports and Airports Construction General Directorate) (2007) Coastal structures, railways and airports construction specification for technical regulations of earthquake hazards. YPU-DLH-060520-001—Interim Report. Ankara, Turkey: DLH (in Turkish)

  • Douglas A (2007) Comment on ‘Systematic determination of earthquake rupture directivity and fault planes from analysis of long-period Pwave spectra’ by L. M. Warren and P. M. Shearer. Geophys J Int. doi:10.1111/j.1365-246X.2007.03370.x

    Google Scholar 

  • Duman TY, Emre O (2013) The East Anatolian Fault: geometry, segmentation and jog characteristics. Geol Soc Lond Spec Publ 372:495–529. doi:10.1144/sp372.14

    Article  Google Scholar 

  • Duman TY, Çan T, Emre Ö, Kadirioğlu FT, Başarır Baştürk N, Kılıç T, Arslan S, Özalp S, Kartal RF, Kalafat D, Karakaya F, Eroğlu Azak T, Özel NM, Ergintav S, Akkar S, Altınok Y, Tekin S, Cingöz A, Kurt Aİ (2016) Seismotectonics database of Turkey. Bull Earthq Eng. doi:10.1007/s10518-016-9965-9

    Google Scholar 

  • Emre Ö, Duman TY, Özalp S, Elmacı H, Olgun Ş, Şaroğlu F (2013) Active fault map of Turkey with an explanatory text 1:1,250,000 scale. General Directorate of Mineral Research and Exploration, Special Publication Series 30

  • Emre Ö, Duman TY, Özalp S, Çan T, Olgun Ş, Elmacı H, Şaroğlu F (2016) Active fault database of Turkey. Bull Earthq Eng. doi:10.1007/s10518-016-0041-2

    Google Scholar 

  • Erdik M, Doyuran V, Akkaş N, Gülkan P (1985) A probabilistic assessment of the seismic hazard in Turkey. Tectonophysics 117:295–344

    Article  Google Scholar 

  • Erdik M, Biro Y, Onur T, Sesetyan K, Birgören G (1999) Assessment of earthquake hazard in Turkey and neighboring regions. Ann Geofis 42:1125–1138

    Google Scholar 

  • Ergin K, Güçlü U (1971) Türkiye Depremlerinde Beklenecek Maksimum Şiddeti Gösterir harita

  • Eyidoğan H, Güçlü U (1993) Türkiye Deprem Bölgeleri Haritasının Evrimi ve Yeni Bir Harita İçin Öneri. Jeofizik 7:95–108

    Google Scholar 

  • Field EH, Jordan TH, Cornell CA (2003) OpenSHA: a developing community-modeling environment for seismic hazard analysis. Seismol Res Lett 74:406–419

    Article  Google Scholar 

  • Field EH, Arrowsmith RJ, Biasi GP, Bird P, Dawson TE, Felzer KR et al (2014) Uniform California earthquake rupture forecast, Version 3 (UCERF3)—the time independent model. Bull Seismol Soc Am 104(3):1122–1180

    Article  Google Scholar 

  • Fielding EJ, Sladen A, Li Z, Avouac J-P, Bürgmann R, Ryder I (2013) Kinematic fault slip evolution source models of the 2008 M7.9 Wenchuan earthquake in China from SAR Interferometry, GPS and teleseismic analysis and implications for longmen Shan tectonics. Geophys J. doi:10.1093/gji/ggt155

    Google Scholar 

  • Frankel A (1995) Mapping seismic hazard in the Central and Eastern United States. Seismol Res Lett 66:8–21

    Article  Google Scholar 

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seism Soc Am 64(15):1363–1367

    Google Scholar 

  • Garfunkel Z (2014) Lateral motion and deformation along the Dead Sea transform. In: Garfunkel Z, Ben-Avraham Z, Kağan E (eds) Dead Sea transform fault system—reviews. Springer, Berlin, pp 109–150

    Google Scholar 

  • Giardini D (Ed.) (1999) The global seismic hazard assessment program (GSHAP) 1992–1999, vol 42. Ann Geofisica, Special Issue, No. 6

  • Giardini D, Basham P (1993) The global seismic hazard assessment program (GSHAP). Ann Geofis 36:3–14

    Google Scholar 

  • Gudjabidze GE (2003) Geological map of Georgia. Georgian State Department of Geology and National Oil Company

  • Gülkan P, Erdik M (1986) Probabilistic tools and Earthquake Hazard forecast: a case study for Turkey, seismic hazard in Mediterranean region. In: Proceedings of summer school organized in Strassburg, France, pp 229–258

  • Gülkan P, Koçyiğit A, Yücemen MS, Doyuran V, Başöz N (1993) En son verilere göre hazırlanan Türkiye deprem bölgeleri haritası. Report No: METU/EERC 93-1

  • Hamiel Y, Fialko Y (2007) Structure and mechanical properties of faults in the North Anatolian Fault system from InSAR observations of coseismic deformation due to the 1999 Izmit (Turkey) earthquake. J Geophys Res 112:B07412. doi:10.1029/2006JB004777

    Article  Google Scholar 

  • Hanks TC, Bakun WH (2002) A bilinear source-scaling model for M-log A observations of continental earthquakes. Bull Seismol Soc Am 92(5):1841–1846

    Article  Google Scholar 

  • Herrmann RB (1977) Recurrence relations. Earthq Notes 48:47–49

    Google Scholar 

  • Hessami K, Pantosti D, Tabassi H, Shabanian E, Abbassi M, Feghhi K, Solaymani S (2003) Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results. Ann Geophys 46(5):903–915

    Google Scholar 

  • Hofmann RB (1996) Individual faults can't produce a Gutenberg-Richter earthquake recurrence. Eng Geol 43(1):5–9

    Article  Google Scholar 

  • İpek M, Uz Z, Güçlü U (1965) Sismolojik Donelere Göre Türkiye Deprem Bölgeleri. Deprem Yönetmeliği Toplantısına Takdim Edilen Rapor, 22 Şubat 1965, Ankara (Yayınlanmamış)

  • Irmak TS, Doğan B, Karakaş A (2012) Source mechanism of the 23 October, 2011, Van (Turkey) earthquake (Mw = 7.1) and aftershocks with its tectonic implications. Earth Planet Sp 64:991. doi:10.5047/eps.2012.05.002

    Article  Google Scholar 

  • Jimenez M-J, Giardini D, Grünthal G (2003) The ESC-SESAME unified hazard model for the European-Mediterranean region. EMSC/CSEM Newsletter 19:2–4

    Google Scholar 

  • Kadirioğlu FT, Kartal RF (2016) The New empirical magnitude conversion relatiğons using an improved earthquake catalogue for Turkey an dits near vicinity (1900–2012). Turk J Earth Sci 25(4):300–310

    Article  Google Scholar 

  • Kadirioğlu FT, Kartal RF, Kılıç T, Kalafat D, Duman TY, Azak TE, Özalp S, Emre Ö (2016) An improved earthquake catalogue (M ≥ 4.0) for Turkey and its near vicinity. Bull Earthq Eng. doi:10.1007/s10518-016-0064-8

  • Kafka AK (2002) Statistical analysis of the hypotheis that seismicty delineates area where future large earthquakes are likely to occur in the central and eastern United States. Seismol Res Lett 73(6):990–1001

    Article  Google Scholar 

  • Kafka AL (2007) Does Seismicity Delineate Zones Where Future Large Earthquakes will Occur in Intraplate Environments? In: Stein S, Mazzotti S (eds) Continental Intraplate Earthquakes: Science, Hazard, and Policy Issue, Geological Society of America Special Paper 425, pp 35–48. doi:10.1130/2007.2425(03)

  • Kagan YY (2002) Modern California Earthquake Catalogs and Their Comparison. Seismol Res Lett 73(6):921–929

    Article  Google Scholar 

  • Kanamori H, Anderson DL (1975) Amplitude of the earth’s free oscillations and long‐period characteristics of the earthquake source. J Geophys Res 80. doi: 10.1029/JB080i008p01075. ISSN: 0148-0227

  • Ketin İ (1982) Genel Jeoloji Cilt I (II.Baskı). Yerbilimlerine Giriş, İstanbul Teknik Üniversitesi Maden Fakültesi, İstanbul, 597

  • Koçyiğit A, Beyhan A (1998) A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics 284:317–336

    Article  Google Scholar 

  • Kreemer C, Klein GE, Shen Z-K, Wang M, Estey L, Wier S, Boler F (2014) Global geodetic strain rate model, GEM technical report 2014-07 V1.0.0. GEM Foundation, Pavia, Italy. doi: 10.13117/GEM.GEGD.TR2014.07

  • Leonard M (2012) Earthquake Fault Scaling: Self-Consistent Relating of Rupture Length, Width, Average Displacement, and Moment Release. Bull Seismol Soc Am 102(6):2797–2797

    Article  Google Scholar 

  • Lin PS, Lee CT (2008) Ground-motion attenuation relationships for subduction-zone earthquakes in Northeastern Taiwan. Bull Seismol Soc Am 98:220–240

    Article  Google Scholar 

  • McClusky S et al (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719

    Article  Google Scholar 

  • McKenzie DP (1970) Plate tectonics of the Mediterranean region. Nature 226:239–243

    Article  Google Scholar 

  • McKenzie DP (1972) Active tectonics of the Mediterranean region. Geophys J R Astron Soc 30:109–185

    Article  Google Scholar 

  • McKenzie DP (1978) Active tectonism in the Alpine-Himalayan belt: the Aegean Sea and the surrounding regions (tectonics of the Aegean region). Geophys J R Astron Soc 55:217–254

    Article  Google Scholar 

  • Molnar P (1979) Earthquake recurrence intervals and plate tectonics. Bull Seismol Soc Am 69:115–133

    Google Scholar 

  • NRC (National Research Council) (1997) Panel on seismic hazard evaluation, review of recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts. National Research Council

  • Nur A, Ben-Avraham Z (1978) Speculations on mountain building and the lost Pacific continent. J Phys Earth 26:21–37

    Article  Google Scholar 

  • Ordaz M, Martinelli F, Meletti C, D’Amico V (2013) CRISIS2012: an updated tool to compute seismic hazard American Geophysical Union, Spring Meeting 2013, abstract #S52A-01

  • Özbakır AD, Govers R, Wortel R (2016) Active faults in the Anatolian-Aegean plate boundary region with Nubia. Turk J Earth Sci. doi:10.3906/yer-1603-4

    Google Scholar 

  • Pagani M, Monelli D, Weatherill G, Danciu L, Crowley H, Silva V, Henshaw P, Butler L, Nastasi M, Panzeri L, Simionato M, Vigano D (2014a) OpenQuake engine: an open hazard (and Risk) software for the global earthquake model. Seismol Res Lett 85(3):692–702

    Article  Google Scholar 

  • Pagani M, Monelli D, Weatherill GA, Garcia J (2014) Testing procedures adopted in the development of the hazard component of the OpenQuake-engine. Global Earthquake Model (GEM) Technical Report 2014-09. doi: 10.13117/GEM.OPENQUAKE.TR2014.09

  • Pamir HN (1948) Dinamik Jeoloji. Cilt II, İstanbul Üniversitesi Yayınları 348, 404 s

  • Papazachos BC, Papaioannou CA (1999) Lithospheric boundaries and plate motions in the Cyprus area. Tectonophysics 308(1):193–204

    Article  Google Scholar 

  • Paton S (1992) Active normal faulting, drainage patterns and sedimentation in Southwestern Turkey. J Geol Soc Lond 149:1031–1044

    Article  Google Scholar 

  • Petersen MD, Frankel AD, Harmsen SC, Mueller CS, Haller KM, Wheeler RL, Wesson RL, Zeng Y, Boyd OS, Perkins DM, Luco N, Field EH, Wills CJ, Rukstales KS (2008) Documentation for the 2008 update of the United States National Seismic Hazard Maps, U.S. Geol. Surv. Open-File Rept. 2008-1128

  • Reasenberg P (1985) Second-order moment of central California seismicity, 1969-82. J Geophys Res 90:5479–5495

    Article  Google Scholar 

  • Reilinger R, Mcclusky S, Vernant P, Lawrence S, Ergintav S, Çakmak R, Özener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, Arrajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111

  • Robertson AHF, Grasso M (1995) Overview of the late Triassic-Recent tectonic and palaeo-environmental development of the Mediterranean region. Terra Nova 7:114–127

    Article  Google Scholar 

  • Robinson D, Fulford G, Dhu T (2005) EQRM: Geoscience Australia’s Earthquake risk model: technicalmanual: Version 3.0., Geoscience Australia Record 2005/01, Geoscience Australia, Canberra

  • Robinson D, Dhu T, Schneider J (2006) Practical probabilistic seismic risk analysis: a demonstration of capability. Seismol Res Lett 77(4):453–459

    Article  Google Scholar 

  • Şaroğlu F, Emre Ö, Kuşçu İ (1992) The east Anatolian fault zone of Turkey. Ann Tecton 6:99–125

    Google Scholar 

  • Scholz CH (1982) Scaling laws for large earthquakes: consequences for physical models. Bull Seismol Soc Am 72:1–14

    Google Scholar 

  • Schwartz DP, Coppersmith KJ (1984) Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones. J Geophys Res: Solid Earth 89(B7):5681–5698

    Article  Google Scholar 

  • Şengör AMC, Yılmaz Y (1981) Tethyan evolution ol Turkey: a plate tectonic approach. Tectonophysics 75:181–241

    Article  Google Scholar 

  • Şengör AMC (1982) Ege’nin neotektonik evrimini yöneten etkenler. Türkiye Jeoloji Kurultayı, Batı Anadolu’nun Genç Tektoniği ve Volkanizması Paneli, Ankara, 59–71

  • Şengör AMC, Görür N, Şaroglu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (Eds.) Strike-slip deformation, basin formation and sedimentation, vol 37. Society of Economic Poleontologistr and Mineralogists Special Publication, pp 227–264

  • Şengör AMC, Tuysuz O, İmren C, Sakinc M, Eyidogan H, Gorur G, Le Pichon X, Rangin C (2005) The North Anatolian Fault: a new look. Annu Rev Earth Planet Sci 33:37–112

    Article  Google Scholar 

  • Sesetyan K, Demircioglu MB, Duman T, Çan T, Tekin S, Azak ET, Zulfikar FO (2016) A probabilistic seismic hazard assessment for the Turkish territory—Part I: area source model. Bull Earthq Eng. doi:10.1007/s10518-016-0005-6

  • Stafford PJ, Strasser FO, Bommer JJ (2008) An evaluation of the applicability of the NGA models to ground motion prediction in the Euro-Mediterranean region. Bull Earthq Eng 6:149–177

    Article  Google Scholar 

  • Stepp JC (1972) Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In: Proceedings of the international conference on microzonation, Seattle, USA, pp 897–910

  • Stirling M, Goded T, Berryman K, Litchfield N (2013) Selection of earthquake scaling relationships for seismic-hazard analysis. Bull Seismol Soc Am 103:2993–3011. doi:10.1785/0120130052

    Article  Google Scholar 

  • Stucchi M, Rovida A, Gomez Capera AA, Alexandre P, Camelbeeck T, Demircioglu MB, Gasperini P, Kouskouna V, Musson RMW, Radulian M, Sesetyan K, Vilanova S, Baumont D, Bungum H, Fäh D, Lenhardt W, Makropoulos K, Martinez Solares JM, Scotti O, Živcic M, Albini P, Batllo J, Papaioannou C, Tatevossian R, Locati M, Meletti C, Viganò D, Giardini D (2013) The SHARE European earthquake catalogue (SHEEC) 1000–1899. J Seismol 17:523–544

    Article  Google Scholar 

  • Tabban A (1969) Türkiye’nin Sismisitesi. İmar ve İskan Bakanlığı, Afet İşleri Genel Müdürlüğü, Deprem Araştırma Enstitüsü Başkanlığı, Ankara, 47

  • TEFER (Turkey Emergency Flood and Earthquake Recovery Project) (2001) Consulting services for improvement of natural hazard insurance and disaster funding strategy. Final Report, Pragramme 6.1 Review of Loss Potential and Catastrophic Risk Modelling, Section 5, The Hazard of Earthquake, Başbakanlık Hazine ve Dış Ticaret Müsteşarlığı-Sigortacılık Genel Müdürlüğü

  • Uhrhammer R (1986) Characteristics of northern and southern California seismicity. Earthq Notes 57:21

    Google Scholar 

  • Wald DJ, Quitoriano V, Heaton TH, Kanamori H (1999) Relationship between peak ground acceleration, peak ground velocity, and modified mercalli intensity for earthquakes in California. Earthq Spectra 15(3):557–564

    Article  Google Scholar 

  • Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70:1337–1346

    Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Woessner J, Danciu L, Giardini D, Crowley H, Cotton F, Grünthal G, Valensise G, Arvidsson R, Basili R, Demircioglu MB, Hiemer S, Meletti C, Musson RW, Rovida A, Sesetyan K, Stucchi M (2015) The 2013 European Seismic Hazard Model: key components and results. Bull Earthq Eng 13:3553–3596. doi:10.1007/s10518-015-9795-1

    Article  Google Scholar 

  • Yarar R, Ergünay O, Erdik M, Gülkan P (1980) A preliminary probabilistic assessment of the seismic hazard in Turkey, vol 1. In: Proceeding 7th world conference on earthquake engineering, İstanbul, pp 309–316

  • Yılmaz Y, Genç SC, Gürer F, Bozcu M, Karacık Z, Altunkaynak Ş, and Elmas A (2000) When did the western Anatolian grabens begin to develop? In: E Bozkurt, JA Winchester and JDA Piper (Eds) Tectonics and magmatism in Turkey and surroundings area. Geological Society of London, Special Publication No: 173, pp 353–384

  • Youngs RR, Coppersmith KJ (1985) Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull Seismol Soc Am 75(4):939–964

    Google Scholar 

  • Youngs R, Chiou S, Silva W, Humphrey J (1997) Strong ground motion attenuation relationships for subduction zone earthquakes. Seism Res Lett 68:58–73

    Article  Google Scholar 

  • Zhao JX, Zhang J, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H, Irikura K, Thio HK, Somerville PG, Fukushima Y (2006) Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull Seismol Soc Am 96(3):898–913

    Article  Google Scholar 

Download references

Acknowledgements

First, we would like to express our gratitude to Sinan Akkar for his kind coordination of the project titled as "The update of the seismic hazard maps of Turkey", and to Mustafa Erdik for his suggestions and comments, which helped us to considerably improve the project. We would like to thank various local researchers who gave us feedback and comments: Tolga Yılmaz, Ahmet Yakut, from Middle East Technical University; Murat Utkucu from Sakarya University. We also acknowledge Laurentiu Danciu from ETHZ, Roberto Basili from INGV, and Tuba Eroglu Azak who wrote and improved the codes and some scripts used in the calculation of some parameters. The study has been sponsored by AFAD (Disaster and Emergency Management Authority of Turkey) under Project Code UDAP-Ç-13-16. We would also like to thank Dr. Baumont for his review and suggestions for the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mine Betül Demircioğlu.

Appendix: earthquake reccurence relationships for each completeness region

Appendix: earthquake reccurence relationships for each completeness region

See Figs. 29, 30, 31, 32, 33, 34, 35, 36, 37, 38 and 39.

Fig. 29
figure 29

Earthquake recurrence parameters for Balkan Region (A)

Fig. 30
figure 30

Earthquake recurrence parameters for Black Sea Region (B)

Fig. 31
figure 31

Earthquake recurrence parameters for Caucasus Region (C)

Fig. 32
figure 32

Earthquake recurrence parameters for Marmara Region (D)

Fig. 33
figure 33

Earthquake recurrence parameters for NAF Zone (E)

Fig. 34
figure 34

Earthquake recurrence parameters for East Anatolia (F)

Fig. 35
figure 35

Earthquake recurrence parameters for Aegean region (G)

Fig. 36
figure 36

Earthquake recurrence parameters for Central Anatolia (H)

Fig. 37
figure 37

Earthquake recurrence parameters for EAF Zone (I)

Fig. 38
figure 38

Earthquake recurrence parameters for Mediterranean Shallow (J)

Fig. 39
figure 39

Earthquake recurrence parameters for Mediterranean Deep (K)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demircioğlu, M.B., Şeşetyan, K., Duman, T.Y. et al. A probabilistic seismic hazard assessment for the Turkish territory: part II—fault source and background seismicity model. Bull Earthquake Eng 16, 3399–3438 (2018). https://doi.org/10.1007/s10518-017-0130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-017-0130-x

Keywords

Navigation