Skip to main content
Log in

Alpha-Fetoprotein as a Factor of Differentiation and Functional Activity of Myeloid-Derived Suppressor Cells

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the role of alpha-fetoprotein (AFP) in regulation of differentiation and functional activity of human myeloid-derived suppressor cells (MDSC) in vitro. To obtain MDSC, CD11b+ cells were isolated from the peripheral blood of healthy donors followed by cytokine induction (IL-1β+GM-CSF) into the MDSC phenotype. The cell functions were assessed by the expression of indoleamine 2,3-dioxygenase (IDO) and arginase-1 (Arg1) and cytokine profile of the cell cultures. Native AFP did not affect the total number of MDSC and the percentage of polymorphonuclear MDSC (PMN-MDSC), but increased the number of monocytic MDSC (M-MDSC). AFP did not change the expression of Arg1, but in low concentrations (10 and 50 U/ml) increased the number of IDO-containing cells. AFP modulated the cytokine profile of CD11b+ cells: it reliably decreased the level of IL-19 (50 and100 U/ml) and showed a tendency to decrease the levels of IL-34, MMP-2, sCD163, CHI3L1, OPN and to increase the levels of IL-29, IL-32, APRIL, PTX3, and sTNF-R1. Thus, we have demonstrated a regulatory effect of native AFP at the level of MDSC generated from CD11b+ cells under conditions of cytokine induction in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ponomarev AV. Myeloid suppressor cells: general characteristics. Immunologiya. 2016;37(1):47-50. Russian. doi: https://doi.org/10.18821/0206-4952-2016-37-1-47-50

  2. Ostrand-Rosenberg S. Myeloid derived-suppressor cells: their role in cancer and obesity. Curr. Opin. Immunol. 2018;51:68-75. doi: https://doi.org/10.1016/j.coi.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kharchenko EP. Maternal-fetal tolerance as a manifestation of regulatory continuum and plasticity of their immune systems (in memory of I.P. Ashmarin). Med. Immunol. 2011;13(2-3):121-132. Russian. doi: https://doi.org/10.15789/1563-0625-2011-2-3-121-132

  4. Munson PV, Adamik J, Butterfield LH. Immunomodulatory impact of α-fetoprotein. Trends Immunol. 2022;43(6):438-448. doi: https://doi.org/10.1016/j.it.2022.04.001

    Article  CAS  PubMed  Google Scholar 

  5. Zamorina SA, Shardina KY, Timganova VP, Bochkova MS, Uzhviyuk SV, Raev MB, Chereshnev VA. Effect of alpha-fetoprotein on differentiation of myeloid supressor cells. Doklady Biochem. Biophys. 2021;501(1):434-437. doi: https://doi.org/10.1134/S1607672921060077

    Article  CAS  Google Scholar 

  6. Köstlin N, Kugel H, Spring B, Leiber A, Marmé A, Henes M, Rieber N, Hartl D, Poets CF, Gille C. Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T-cell responses. Eur. J. Immunol. 2014;44(9):2582-2591. doi: https://doi.org/10.1002/eji.201344200

    Article  CAS  PubMed  Google Scholar 

  7. Mizejewski GJ. Biological roles of alpha-fetoprotein during pregnancy and perinatal development. Exp. Biol. Med. (Maywood). 2004;229(6):439-463. doi: https://doi.org/10.1177/153537020422900602

    Article  CAS  PubMed  Google Scholar 

  8. Mizejewski GJ. Review of the putative cell-surface receptors for alpha-fetoprotein: identification of a candidate receptor protein family. Tumour Biol. 2011;32(2):241-258. doi: https://doi.org/10.1007/s13277-010-0134-5

    Article  CAS  PubMed  Google Scholar 

  9. Belyaev NN, Abdolla N, Perfilyeva YV, Ostapchuk YO, Krasnoshtanov VK, Kali A, Tleulieva R. Daunorubicin conjugated with alpha-fetoprotein selectively eliminates myeloid-derived suppressor cells (MDSC) and inhibits experimental tumor growth. Cancer Immunol. Immunother. 2018;67(1):101-111. doi: https://doi.org/10.1007/s00262-017-2067-y

    Article  CAS  PubMed  Google Scholar 

  10. Murphy SP, Choi JC, Holtz R. Regulation of major histocompatibility complex class II gene expression in trophoblast cells. Reprod. Biol. Endocrinol. 2004;2:52. doi: https://doi.org/10.1186/1477-7827-2-52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bansal V, Ochoa JB. Arginine availability, arginase, and the immune response. Curr. Opin. Clin. Nutr. Metab. Care. 2003;6(2):223-228. doi: https://doi.org/10.1097/00075197-200303000-00012

    Article  CAS  PubMed  Google Scholar 

  12. Cook PC, Jones LH, Jenkins SJ, Wynn TA, Allen JE, MacDonald AS. Alternatively activated dendritic cells regulate CD4+ T-cell polarization in vitro and in vivo. Proc. Natl Acad. Sci. USA. 2012;109(25):9977-9982. doi: https://doi.org/10.1073/pnas.1121231109

    Article  PubMed  PubMed Central  Google Scholar 

  13. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta. 2014;1843(11):2563-2582. doi: https://doi.org/10.1016/j.bbamcr.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  14. Eda H, Zhang J, Keith RH, Michener M, Beidler DR, Monahan JB. Macrophage-colony stimulating factor and interleukin-34 induce chemokines in human whole blood. Cytokine. 2010;52(3):215-220. doi: https://doi.org/10.1016/j.cyto.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  15. Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S, Rittling SR, Denhardt DT, Glimcher MJ, Cantor H. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science. 2000;287:860-864. doi: https://doi.org/10.1126/science.287.5454.860

    Article  CAS  PubMed  Google Scholar 

  16. Lee CG, Hartl D, Lee GR, Koller B, Matsuura H, Da Silva CA, Sohn MH, Cohn L, Homer RJ, Kozhich AA, Humbles A, Kearley J, Coyle A, Chupp G, Reed J, Flavell RA, Elias JA. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J. Exp. Med. 2009;206(5):1149-1166. doi: https://doi.org/10.1084/jem.20081271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Møller HJ. Soluble CD163. Scand. J. Clin. Lab Invest. 2012;72(1):1-13. doi: https://doi.org/10.3109/00365513.2011.626868

    Article  CAS  PubMed  Google Scholar 

  18. Savasan ZA, Chaiworapongsa T, Romero R, Hussein Y, Kusanovic JP, Xu Y, Dong Z, Kim CJ, Hassan SS. Interleukin-19 in fetal systemic inflammation. J. Matern. Fetal Neonatal Med. 2012;25(7):995-1005. doi: https://doi.org/10.3109/14767058.2011.605917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 2011;29:71-109. doi: https://doi.org/10.1146/annurev-immunol-031210-101312

    Article  CAS  PubMed  Google Scholar 

  20. Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity. 2005;22(1):131-142. doi: https://doi.org/10.1016/j.immuni.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  21. Yu G, Boone T, Delaney J, Hawkins N, Kelley M, Ramakrishnan M, McCabe S, Qiu WR, Kornuc M, Xia XZ, Guo J, Stolina M, Boyle WJ, Sarosi I, Hsu H, Senaldi G, Theill LE. APRIL and TALL-I and receptors BCMA and TACI: system for regulating humoral immunity. Nat. Immunol. 2000;1(3):252-256. doi: https://doi.org/10.1038/79802

    Article  CAS  PubMed  Google Scholar 

  22. Cabal-Hierro L, Lazo PS. Signal transduction by tumor necrosis factor receptors. Cell Signal. 2012;24(6):1297-1305. doi: https://doi.org/10.1016/j.cellsig.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  23. Zlibut A, Bocsan IC, Agoston-Coldea L. Pentraxin-3 and endothelial dysfunction. Adv. Clin. Chem. 2019;91:163-179. doi: https://doi.org/10.1016/bs.acc.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  24. Doni A, Michela M, Bottazzi B, Peri G, Valentino S, Polentarutti N, Garlanda C, Mantovani A. Regulation of PTX3, a key component of humoral innate immunity in human dendritic cells: stimulation by IL-10 and inhibition by IFN-gamma. J. Leukoc. Biol. 2006;79(4):797-802. doi: https://doi.org/10.1189/jlb.0905493

    Article  CAS  PubMed  Google Scholar 

  25. Presta M, Camozzi M, Salvatori G, Rusnati M. Role of the soluble pattern recognition receptor PTX3 in vascular biology. J. Cell. Mol. Med. 2007;11(4):723-738. doi: https://doi.org/10.1111/j.1582-4934.2007.00061.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol. 2010;63(6):601-610. doi: https://doi.org/10.1111/j.1600-0897.2010.00852.x

    Article  CAS  PubMed  Google Scholar 

  27. Mauti LA, Le Bitoux MA, Baumer K, Stehle JC, Golshayan D, Provero P, Stamenkovic I. Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. J. Clin. Invest. 2011;121(7):2794-2807. doi: https://doi.org/10.1172/JCI41936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chereshnev VA, Zamorina SA, Shardina KYu, Uzhviyuk SV, Timganova VP, Bochkova MS, Khramtsov PV, Rayev MB. The role of alpha-fetoprotein in the regulation of differentiation and functional activity of myeloid-derived suppressor cells. Vestn. Permsk. Fed. Issled. Tsentra. 2022;(2):56-63. Russian. doi: https://doi.org/10.7242/2658-705X/2022.2.6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yu. Shardina.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 2, pp. 83-91, June, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shardina, K.Y., Zamorina, S.A., Timganova, V.P. et al. Alpha-Fetoprotein as a Factor of Differentiation and Functional Activity of Myeloid-Derived Suppressor Cells. Bull Exp Biol Med 175, 535–543 (2023). https://doi.org/10.1007/s10517-023-05901-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05901-3

Keywords

Navigation