Skip to main content

Advertisement

Log in

Changes Induced by Inflammatory-Activated Immune Cell Microenvironment in the Paracrine Profile of MSC

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the influence of activated innate and adaptive immune cells on the production of growth factors by human adipose tissue multipotent mesenchymal stromal cells (MSC). MSC showed immunosuppressive properties in vitro: decreased activation and proliferation of stimulated immune cells. T-cell interaction with MSC resulted with increased secretion of EGF, PDGF-AB/BB, FGF-2, and VEGF growth factors. Co-culturing with natural killer cells also stimulated TGFα production. The intensity of the effect varied depending on the type of immune cells. Natural killer caused a more significant increase in PDGF-AB/BB and FGF-2 secretion, while VEGF secretion increased stronger after co-culturing with T cells. The obtained data indicate the possibility of increasing reparative potential of MSC under the influence of inflammatory microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One. 2010;5(2):e9016. https://doi.org/10.1371/journal.pone.0009016

  2. Romanov YA, Volgina NE, Vtorushina VV, Romanov AY, Dugina TN, Kabaeva NV, Sukhikh GT. Comparative Analysis of Secretome of Human Umbilical Cord- and Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells. Bull. Exp. Biol. Med. 2019;166(4):535-540. https://doi.org/10.1007/s10517-019-04388-1

    Article  CAS  PubMed  Google Scholar 

  3. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5-6):419-427. https://doi.org/10.1016/j.cytogfr.2009.10.002

    Article  CAS  Google Scholar 

  4. Lee SC, Jeong HJ, Lee SK, Kim SJ. Hypoxic conditioned medium from human adipose-derived stem cells promotes mouse liver regeneration through JAK/STAT3 Signaling. Stem Cells Transl. Med. 2016;5(6):816-825. https://doi.org/10.5966/sctm.2015-0191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yin TC, Wu RW, Sheu JJ, Sung PH, Chen KH, Chiang JY, Hsueh SK, Chung WJ, Lin PY, Hsu SL, Chen CC, Chen CY, Shao PL, Yip HK. Combined therapy with extracorporeal shock wave and adipose-derived mesenchymal stem cells remarkably improved acute ischemia-reperfusion injury of quadriceps muscle. Oxid. Med. Cell Longev. 2018;2018:6012636. https://doi.org/10.1155/2018/6012636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yin TC, Sung PH, Chen KH, Li YC, Luo CW, Huang CR, Sheu JJ, Chiang JY, Lee MS, Yip HK. Extracorporeal shock wave-assisted adipose-derived fresh stromal vascular fraction restores the blood flow of critical limb ischemia in rat. Vascul. Pharmacol. 2019;113:57-69. https://doi.org/10.1016/j.vph.2018.12.003

    Article  CAS  PubMed  Google Scholar 

  7. Kwon SH, Bhang SH, Jang HK, Rhim T, Kim BS. Conditioned medium of adipose-derived stromal cell culture in three-dimensional bioreactors for enhanced wound healing. J. Surg. Res. 2015;194(1):8-17. https://doi.org/10.1016/j.jss.2014.10.053

    Article  CAS  PubMed  Google Scholar 

  8. Gharat TP, Diaz-Rodriguez P, Erndt-Marino JD, Jimenez Vergara AC, Munoz Pinto DJ, Bearden RN, Huggins SS, Grunlan M, Saunders WB, Hahn MS. A canine in vitro model for evaluation of marrow-derived mesenchymal stromal cell-based bone scaffolds. J. Biomed. Mater. Res. A. 2018;106(9):2382-2393. https://doi.org/10.1002/jbm.a.36430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li H, Liu D, Li C, Zhou S, Tian D, Xiao D, Zhang H, Gao F, Huang J. Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit. Cell Biol. Int. 2017;41(12):1379-1390. https://doi.org/10.1002/cbin.10869

    Article  CAS  PubMed  Google Scholar 

  10. Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, Shen B, Yin S, Liu W, Cui L, Li N. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18(8):846-857. https://doi.org/10.1038/cr.2008.80

    Article  CAS  PubMed  Google Scholar 

  11. Liang C, Jiang E, Yao J, Wang M, Chen S, Zhou Z, Zhai W, Ma Q, Feng S, Han M. Interferon-γ mediates the immunosuppression of bone marrow mesenchymal stem cells on T-lymphocytes in vitro. Hematology. 2018;23(1):44-49. https://doi.org/10.1080/10245332.2017.1333245

    Article  CAS  PubMed  Google Scholar 

  12. Petinati NA, Kapranov NM, Bigil’deev AE, Popova MD, Davydova YO, Gal’tseva IV, Drize NI, Kuz’mina LA, Parovichnikova EN, Savchenko VG. Changing the Properties of Multipotent Mesenchymal Stromal Cells by IFNγ Administration. Bull. Exp. Biol. Med. 2017;163(2):230-234. https://doi.org/10.1007/s10517-017-3773-3

  13. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 2009;15(1):42-49. https://doi.org/10.1038/nm.1905

  14. Wobma HM, Kanai M, Ma SP, Shih Y, Li HW, Duran-Struuck R, Winchester R, Goeta S, Brown LM, Vunjak-Novakovic G. Dual IFN-γ/hypoxia priming enhances immunosuppression of mesenchymal stromal cells through regulatory proteins and metabolic mechanisms. J. Immunol. Regen. Med. 2018;1:45-56. https://doi.org/10.1016/j.regen.2018.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nimiritsky PP, Eremichev RY, Alexandrushkina NA, Efimenko AY, Tkachuk VA, Makarevich PI. Unveiling mesenchymal stromal cells’ organizing function in regeneration. Int. J. Mol. Sci. 2019;20(4):823. https://doi.org/10.3390/ijms20040823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Girousse A, Mathieu M, Sastourné-Arrey Q, Monferran S, Casteilla L, Sengenès C. Endogenous mobilization of mesenchymal stromal cells: a pathway for interorgan communication? Front. Cell Dev. Biol. 2021;8:598520. https://doi.org/10.3389/fcell.2020.598520

  17. Gray A, Schloss RS, Yarmush M. Donor variability among anti-inflammatory pre-activated mesenchymal stromal cells. Technology (Singap World Sci). 2016;4(3):201-215. https://doi.org/10.1142/S2339547816500084

    Article  PubMed  PubMed Central  Google Scholar 

  18. Redondo-Castro E, Cunningham C, Miller J, Martuscelli L, Aoulad-Ali S, Rothwell NJ, Kielty CM, Allan SM, Pinteaux E. Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Res. Ther. 2017;8(1):79. https://doi.org/10.1186/s13287-017-0531-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ragni E, Perucca Orfei C, De Luca P, Mondadori C, Viganò M, Colombini A, de Girolamo L. Inflammatory priming enhances mesenchymal stromal cell secretome potential as a clinical product for regenerative medicine approaches through secreted factors and EV-miRNAs: the example of joint disease. Stem Cell Res. Ther. 2020;11(1):165. https://doi.org/10.1186/s13287-020-01677-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maldonado-Lasunción I, Haggerty AE, Okuda A, Mihara T, de la Oliva N, Verhaagen J, Oudega M. The effect of inflammatory priming on the therapeutic potential of mesenchymal stromal cells for spinal cord repair. Cells. 2021;10(6):1316. https://doi.org/10.3390/cells10061316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herrmann JL, Wang Y, Abarbanell AM, Weil BR, Tan J, Meldrum DR. Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem cell-mediated cardioprotection. Shock. 2010;33(1):24-30. https://doi.org/10.1097/SHK.0b013e3181b7d137

    Article  CAS  PubMed  Google Scholar 

  22. Gorin C, Rochefort GY, Bascetin R, Ying H, Lesieur J, Sadoine J, Beckouche N, Berndt S, Novais A, Lesage M, Hosten B, Vercellino L, Merlet P, Le-Denmat D, Marchiol C, Letourneur D, Nicoletti A, Vital SO, Poliard A, Salmon B, Muller L, Chaussain C, Germain S. Priming dental pulp stem cells with fibroblast growth factor-2 increases angiogenesis of implanted tissue-engineered constructs through hepatocyte growth factor and vascular endothelial growth factor secretion. Stem Cells Transl. Med. 2016;5(3):392-404. https://doi.org/10.5966/sctm.2015-0166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Windmolders S, De Boeck A, Koninckx R, Daniëls A, De Wever O, Bracke M, Hendrikx M, Hensen K, Rummens JL. Mesenchymal stem cell secreted platelet derived growth factor exerts a pro-migratory effect on resident Cardiac Atrial appendage Stem Cells. J. Mol. Cell. Cardiol. 2014;66:177-188. https://doi.org/10.1016/j.yjmcc.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  24. Tarcisia T, Damayanti L, Antarianto RD, Moenadjat Y, Pawitan JA. Adipose derived stem cell conditioned medium effect on proliferation phase of wound healing in Sprague Dawley rat. Med. J. Indonesia. 2017;26(4):239-245. https://doi.org/10.13181/mji.v26i4.1755

  25. Padeta I, Nugroho W, Kusindarta DL, Fibrianto YL, Budipitojo T. Mesenchymal stem cell-conditioned medium promote the recovery of skin burn wound. Asian J. Anim. Vet. Adv. 2017;12(3):132-141. https://doi.org/10.3923/ajava.2017.132.141

    Article  CAS  Google Scholar 

  26. Zhou BR, Xu Y, Guo SL, Xu Y, Wang Y, Zhu F, Permatasari F, Wu D, Yin ZQ, Luo D. The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. Biomed. Res. Int. 2013;2013:519126. https://doi.org/10.1155/2013/519126

  27. Wang Y, Crisostomo PR, Wang M, Markel TA, Novotny NM, Meldrum DR. TGF-alpha increases human mesenchymal stem cell-secreted VEGF by MEK- and PI3-K- but not JNK- or ERK-dependent mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008;295(4):R1115-R1123. https://doi.org/10.1152/ajpregu.90383.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Gornostaeva.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 234-238, December, 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gornostaeva, A.N., Buravkova, L.B. Changes Induced by Inflammatory-Activated Immune Cell Microenvironment in the Paracrine Profile of MSC. Bull Exp Biol Med 174, 544–548 (2023). https://doi.org/10.1007/s10517-023-05745-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05745-x

Keywords

Navigation