Skip to main content
Log in

Changes in the Number of Mesenchymal Stem Cells in Bone Marrow at Different Periods after In Vivo Exposure of the Bone Marrow to Local Infrared Laser Radiation

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We determined optimal parameters of bone marrow (BM) irradiation in vivo for rapid increase in the number of mesenchymal stem cells (MSC) at the initial stages of the culturing without changing the karyotype, polyploidy, which are observed at higher passages. Such an increase is necessary to achieve the required number of cells at the initial passages for subsequent transplantation into the body. It was shown that after irradiation with λ=0.97 μm, the maximum and similar increase in the content of BM MSC in comparison with the control (by 2.4 times) was observed on day 2 in the irradiated and contralateral tibia. An insignificant difference in the number of BM MSC for the irradiated and contralateral tibia remained at all terms after irradiation, with a general decrease in the number of BM MSC up to 21 days. After laser irradiation with λ=1.56 μm, the maximum number of BM MSC was also observed on day 2. In this case, the concentration of these cells in the irradiated and contralateral limbs exceeded the control by 3.1 and 1.7 times, respectively. With increasing the time after exposure, the number of BM MSC in both limbs showed the same tendency to a decrease as after irradiation at λ=0.97 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bochkov NP, Nikitina VA. Cytogenetics of human stem cells. Mol. Med. 2008;(3):40-47. Russian.

  2. Emel’yanov AN, Kir’yanova VV. The application of stem cells, visible and infrared light in regenerative medicine. Part 1. Vopr. Kurortol. Fizioter. Lech. Fiz. Kult. 2015;92(1):51-62. doi: https://doi.org/10.17116/kurort2015151-62

    Article  PubMed  Google Scholar 

  3. Emel’yanov AN, Kir’yanova VV. The application of stem together with visible and infrared light in regenerative medicine (Part 2). Vopr. Kurortol. Fizioter. Lech. Fiz. Kult. 2015;92(2):43-51. doi: https://doi.org/10.17116/kurort2015243-51

    Article  PubMed  Google Scholar 

  4. Ivanov-Smolenskiĭ AA, Chaĭlakhian RK, Gerasimov IuV, Gorskaia IuF, Kuralesova AI. Origin of stromal bone marrow mechanocytes according to the results of typing them by isoantigens and chromosomal markers. Ontogenez. 1978;9(3):245-252.

    PubMed  Google Scholar 

  5. Moskvin SV, Kliuchnikov DIu, Antipov EV, Volchkov SE, Kiseleva ON. The influence of pulsed low-intensity laser radiation of the red (635 nm) and infrared (904 nm) spectra on the human mesenchymal stem cells in vitro. Vopr. Kurortol. Fizioter. Lech. Fiz. Kult. 2014;(6):40-47.

  6. Chailahyan RK, Gerasimov JuV, Sviridov AP, Kondjurin AV, Tambiev AH, Bagratishvili VN. Effect of IR laser radiation on the multipotent mesenchymal stromal stem cells of rat marrow in vivo. Ross. Immunol. Zh. 2009;3(3-4):333-337. Russian.

    Google Scholar 

  7. Chailahyan RK, Yusupov VI, Gerasimov YuV, Sobolev PA, Tambiev AKh, Vorob’eva NN, Sviridov AP, Bagratashvili VN. Effect of hydrodynamic processes and low-intensity radiation with wavelengths of 0.63 μm and 7.1 mm on proliferative activity of bone marrow stroma stem cells in vitro. Biomeditsina. 2011;(2):24-29. Russian.

  8. Anderson HJ, Sahoo JK, Ulijn RV, Dalby MJ. Mesenchymal stem cell fate: applying biomaterials for control of stem cell behavior. Front. Bioeng. Biotechnol. 2016;4:38. doi: https://doi.org/10.3389/fbioe.2016.00038

    Article  PubMed  PubMed Central  Google Scholar 

  9. Castilla-Casadiego DA, Reyes-Ramos AM, Domenech M, Almodovar J. Effects of physical, chemical, and biological stimulus on h-MSC expansion and their functional characteristics. Ann. Biomed. Eng. 2020;48(2):519-535. doi: https://doi.org/10.1007/s10439-019-02400-3

    Article  PubMed  Google Scholar 

  10. Chaĭlakhian RK, Gerasimov IuV, Kuralesova AI, Latsinik NV, Genkina EN, Chaĭlakhian MR. Proliferative and differentiation potential of individual clones derived from bone marrow stromal precursor cells. Izv. Akad. Nauk. Ser. Biol. 2001;(6):682-692.

  11. Chailakhyan RK, Yusupov VI, Gorskaya YuF, Kuralesova AI, Gerasimov YuV, Sviridov AP, Tambiev AKh, Vorobieva NN, Grosheva AG, Shishkova VV, Moskvina IL, Bagratashvili VN. Effect of acoustic pulses and EHF radiation on multipotent marrow stromal cells in tissue engineering constructs. J. Innovative Optical Health Sci. 2017;10(1):1650036. doi: https://doi.org/10.1142/S179354581650036X

    Article  Google Scholar 

  12. Emelyanov AN, Kiryanova VV. Photomodulation of proliferation and differentiation of stem cells by the visible and infrared light. Photomed. Laser Surg. 2015;33(3):164-174. doi: https://doi.org/10.1089/pho.2014.3830

    Article  PubMed  Google Scholar 

  13. Gerasimov AI, Chaĭlakhian RK, Latsinik NV, Kuralesova AI, Genkina EN, Chaĭlakhian MR. Population dynamics of clonogenic stromal precursor cells in hemopoietic and lymphoid organs during bone marrow regeneration. Izv. Akad. Nauk. Ser. Biol. 2001;(6):693-703.

    Google Scholar 

  14. Li CX, Talele NP, Boo S, Koehler A, Knee-Walden E, Balestrini JL, Speight P, Kapus A, Hinz B. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat. Mater. 2017;16(3):379-389. doi: https://doi.org/10.1038/nmat4780

    Article  CAS  PubMed  Google Scholar 

  15. McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, Murawski K, Kingham E, Oreffo RO, Dalby MJ. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat. Mater. 2011;10(8):637-644. doi: https://doi.org/10.1038/nmat3058

    Article  CAS  PubMed  Google Scholar 

  16. Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg. Med. 2007;39(4):373- 378. doi: https://doi.org/10.1002/lsm.20492

    Article  PubMed  Google Scholar 

  17. Yang C, Tibbitt MW, Basta L, Anseth KS. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 2014;13(6):645-652. doi: https://doi.org/10.1038/nmat3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yusupov V, Vorobyeva N, Chailakhyan R, Sviridov A. Optical and thermal fields induced in the bone marrow by external laser irradiation. Lasers Med. Sci. 2021. Aug 4. doi: https://doi.org/10.1007/s10103-021-03380-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Chailakhyan.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 1, pp. 9-13, March, 2022

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chailakhyan, R.K., Grosheva, A.G., Vorobyeva, N.N. et al. Changes in the Number of Mesenchymal Stem Cells in Bone Marrow at Different Periods after In Vivo Exposure of the Bone Marrow to Local Infrared Laser Radiation. Bull Exp Biol Med 173, 119–122 (2022). https://doi.org/10.1007/s10517-022-05505-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-022-05505-3

Key Words

Navigation