Skip to main content

Advertisement

Log in

Influence of Tumor Suppressor p53 Functioning on the Expression of Antioxidant System Genes under the Action of Cytotoxic Compounds

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The effect of inhibition of the tumor suppressor p53 on the antioxidant system genes expression under the influence of cytotoxic compounds of the platinum group was studied. It was found that the action of platinum(II) and platinum(IV) complexes induced accumulation of p53 protein with a maximum in 12 h, which was confirmed by an increase in the expression of the P21 gene, the target gene of the p53 protein. It was shown that the action of platinum complexes activated the expression of catalase and superoxide dismutase 2 genes. Suppression of p53 protein functions with specific inhibitor α-piphitrin under the action of platinum complexes reduced the expression of catalase and superoxide dismutase 2 genes and the target gene P21, which attested to the p53-dependent regulation of these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mumyatova VA, Balakina AA, Filatova NV, Sen’ VD, Korepin AG, Terentev AA. Effect of Cytotoxic Compounds on Activity of Antioxidant Enzyme System in MCF-7 and H1299 Cells.. Bull. Exp. Biol. Med. 2016;161(1):179-183. https://doi.org/10.1007/s10517-016-3371-9

    Article  CAS  Google Scholar 

  2. Behrend L, Mohr A, Dick T, Zwacka RM. Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol. Cell. Biol. 2005;25(17):7758-7769.

    Article  CAS  Google Scholar 

  3. Charlot JF, Nicolier M, Prétet JL, Mougin C. Modulation of p53 transcriptional activity by PRIMA-1 and Pifithrin-alpha on staurosporine-induced apoptosis of wild-type and mutated p53 epithelial cells. Apoptosis. 2006;11(5):813-827.

    Article  CAS  Google Scholar 

  4. Dakudo GD. Mitochondrial Genetics and Cancer. Berlin, 2010.

  5. Drane P, Bravard A, Bouvard V, May E. Reciprocal downregulation of p53 and SOD2 gene expression - implication in p53 mediated apoptosis. Oncogene. 2001;20(4):430-439.

    Article  CAS  Google Scholar 

  6. Gudkov AV, Komarova EA. Prospective therapeutic applications of p53 inhibitors. Biochem. Biophys. Res. Commun. 2005;331(3):726-736.

    Article  CAS  Google Scholar 

  7. Holley AK, Dhar SK, St Clair DK. Manganese superoxide dismutase versus p53: the mitochondrial center. Ann. N.Y. Acad. Sci. 2010;1201:72-78.

    Article  CAS  Google Scholar 

  8. Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I, Ichimiya M, Sengupta S, Mechanic L, Okamura S, Hofseth LJ, Moake M, Nagashima M, Forrester KS, Harris CC. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res. 2004;64(7):2350-2356.

    Article  CAS  Google Scholar 

  9. Jiang M, Wei Q, Wang J, Du Q, Yu J, Zhang L, Dong Z. Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis. Oncogene. 2006;25(29):4056-4066.

    Article  CAS  Google Scholar 

  10. Jiang M, Yi X, Hsu S, Wang CY, Dong Z. Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity. Am. J. Physiol. Renal Physiol. 2004;287(6):F1140-F1147.

    Article  CAS  Google Scholar 

  11. Ju SM, Pae HO, Kim WS, Kang DG, Lee HS, Jeon BH. Role of reactive oxygen species in p53 activation during cisplatin-induced apoptosis of rat mesangial cells. Eur. Rev. Med. Pharmacol. Sci. 2014;18(8):1135-1141.

    PubMed  Google Scholar 

  12. Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair. (Amst). 2016;42:63-71.

    Article  CAS  Google Scholar 

  13. Koch OR, Fusco S, Ranieri SC, Maulucci G, Palozza P, Larocca LM, Cravero A.A, Farre’ SM, De Spirito M, Galeotti T, Pani G. Role of the life span determinant P66(shcA) in ethanolinduced liver damage. Lab. Invest. 2008;88(7):750-760.

    CAS  Google Scholar 

  14. Komarova EA, Neznanov N, Komarov PG, Chernov MV, Wang K, Gudkov AV. p53 inhibitor pifithrin alpha can suppress heat shock and glucocorticoid signaling pathways. J. Biol. Chem. 2003;278(18):15 465-15 468.

  15. Ladelfa MF, Toledo MF, Laiseca JE, Monte M. Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production. Antioxid. Redox Signal. 2011;15(6):1749-1761.

    Article  CAS  Google Scholar 

  16. Li PF, Dietz R, von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J. 1999;18(21):6027-6036.

    Article  CAS  Google Scholar 

  17. Pani G, Bedogni B, Anzevino R, Colavitti R, Palazzotti B, Borrello S, Galeotti T. Deregulated manganese superoxide dismutase expression and resistance to oxidative injury in p53-deficient cells. Cancer Res. 2000;60(16):4654-4660.

    CAS  PubMed  Google Scholar 

  18. Proietti De Santis L, Balajee A.S, Lorenti Garcia C, Pepe G, Worboys AM, Palitti F. Inhibition of p53, p21 and Bax by pifithrin-alpha does not affect UV induced apoptotic response in CS-B cells. DNA Repair (Amst). 2003;2(8):891-900.

  19. Rahman FU, Ali A, Khan IU, Duong HQ, Guo R, Wang H, Li ZT, Zhang DW. Novel phenylenediamine bridged mixed ligands dimetallic square planner Pt(II) complex inhibits MMPs expression via p53 and caspase-dependent signaling and suppress cancer metastasis and invasion. Eur. J. Med. Chem. 2017;125:1064-1075.

    Article  CAS  Google Scholar 

  20. Robbins D, Zhao Y. Oxidative Stress Induced by MnSOD-p53 Interaction: Pro- or Anti-Tumorigenic? J. Signal Transduct. 2012;2012. ID 101465. https://doi.org/10.1155/2012/101465

  21. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat. Med. 2005;11(12):1306-1313.

    Article  CAS  Google Scholar 

  22. Smeenk L, Lohrum M. Behind the scenes: unravelling the molecular mechanisms of p53 target gene selectivity. Int. J. Oncol. 2010;37(5):1061-1070.

    CAS  PubMed  Google Scholar 

  23. Song C, Lu P, Sun G, Yang L, Wang Z, Wang Z. miR-34a sensitizes lung cancer cells to cisplatin via p53/miR-34a/ MYCN axis. Biochem. Biophys. Res. Commun. 2017;482(1):22-27.

    CAS  Google Scholar 

  24. Stupina T, Balakina A, Kondrat’eva T, Kozub G, Sanina N, Terent’ev A. NO-donor nitrosyl iron complex with 2-aminophenolyl ligand induces apoptosis and inhibits NF-κB function in HeLa cells. Sci. Pharm. 2018;86(4. pii: E46. https://doi.org/10.3390/scipharm86040046

  25. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413-431.

    Article  CAS  Google Scholar 

  26. Vousden KH, Ryan KM. P53 and metabolism. Nat. Rev. Cancer. 2009;9(10):691-700.

    Article  CAS  Google Scholar 

  27. Walton MI, Wilson SC, Hardcastle IR, Mirza AR, Workman P. An evaluation of the ability of pifithrin-alpha and -beta to inhibit p53 function in two wild-type p53 human tumor cell lines. Mol. Cancer Ther. 2005;9(4):1369-1377.

    Article  Google Scholar 

  28. Wheate NJ, Walker S, Craig GE, Oun R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010;39(35):8113-8127.

    Article  CAS  Google Scholar 

  29. Zeng F, Yu X, Sherry JP, Dixon B, Duncker BP, Bols NC. The p53 inhibitor, pifithrin-α, disrupts microtubule organization, arrests growth, and induces polyploidy in the rainbow trout gill cell line, RTgill-W1. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2016;179:1-10.

    Article  CAS  Google Scholar 

  30. Zhao Y, Chaiswing L, Velez JM, Batinic-Haberle I, Colburn NH, Oberley TD, St Clair DK. p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res. 2005;65(9):3745-3750.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Mumyatova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 1, pp. 54-61, January, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mumyatova, V.A., Balakina, A.A., Lapshina, M.A. et al. Influence of Tumor Suppressor p53 Functioning on the Expression of Antioxidant System Genes under the Action of Cytotoxic Compounds. Bull Exp Biol Med 169, 169–175 (2020). https://doi.org/10.1007/s10517-020-04844-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04844-3

Key Words

Navigation