Skip to main content
Log in

Differentiation and Cell–Cell Interactions of Neural Progenitor Cells Transplanted into Intact Adult Brain

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the behavior and cell–cell interactions of embryonic brain cell from GFP-reporter mice after their transplantation into the intact adult brain. Fragments or cell suspensions of fetal neocortical cells at different stages of development were transplanted into the neocortex and striatum of adult recipients. Even in intact brain, the processes of transplanted neurons formed extensive networks in the striatum and neocortical layers I and V-VI. Processes of transplanted cells at different stages of development attained the rostral areas of the frontal cortex and some of them reached the internal capsule. However, the cells transplanted in suspension had lower process growth potency than cells from tissue fragments. Tyrosine hydroxylase fibers penetrated from the recipient brain into grafts at both early and late stages of development. Our experiments demonstrated the formation of extensive reciprocal networks between the transplanted fetal neural cells and recipient brain neurons even in intact brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. K. Sukhinichi, A. V. Podgornyi, and M. A. Aleksandrova, Izv. Ross. Akad. Nauk. Ser. Biol., No. 6, 659-669 (2011).

  2. J. R. Cannon and J. T. Greenamyre, Neurosci. Lett., 464, No. 1, 14-17 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. L. Domballe, F. Gaillard, and A. Gaillard, Exp. Neurol., 180, No. 2, 110-122 (2003).

    Article  PubMed  Google Scholar 

  4. K. D. Dougherty, C.F. Dreyfus, and I. B. Black, Neurobiol. Dis., 7, No. 6, Pt B, 574-585 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. T. B. Freeman, P. R. Sanberg, M. Nauert, et al., Cell Tansplant., 4, No. 1, 141-154 (1995).

    Article  CAS  Google Scholar 

  6. R. A. Fricker-Gates, J. J. Shin, C. C. Tai, et al., J. Neurosci., 22, No. 10, 4045-4056 (2002).

    CAS  PubMed  Google Scholar 

  7. F. Gaillard, L. Domballe, and A. Gaillard, Neuroscience, 126, No. 3, 631-637 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. A. Gaillard and M. Jaber, Cell Adh. Migr., 1, No. 4, 161-164 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  9. A. Gaillard, L. Prestoz, B. Dumartin, et al., Nat. Neurosci., 10, No. 10, 1294-1299 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. P. J. Hallett, O. Cooper, D. Sadi, et al., Cell Rep., 7, No. 6, 1755-1761 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. L. Hao, Z. Zou, H. Tian, et al., Biomed. Res. Int. doi: 10.1155/2014/468748 (2014).

    Google Scholar 

  12. E. A. Huebner and S. M. Strittmatter, Results Probl. Cell Differ., 48, 339-351 (2009).

    PubMed Central  CAS  PubMed  Google Scholar 

  13. P. Lu, Y. Wang, L. Graham, et al., Cell, 150, No. 6, 1264-1273 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. G. Martino, S. Pluchino, L. Bonfanti, and M. Schwartz, Physiol. Rev., 91, No. 4, 1281-1304 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. R. Muramatsu, M. Ueno, and T. Yamashita, Biosci. Trends, 3, No. 5, 179-183 (2009).

    CAS  PubMed  Google Scholar 

  16. J. Nelander, S. Grealish, and M. Parmar, Neuroreport, 24, No. 18, 1025-1030 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. M. Okabe, M. Ikawa, K. Kominami, et al., FEBS Lett., 407, No. 3, 313-319 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. V. Ourednik and J. Ourednik, Ann. N.Y. Acad. Sci., No. 1049, 172-184 (2005).

  19. C. Raposo and M. Schwartz, Glia, 62, No. 11, 1895-1904 (2014).

    Article  PubMed  Google Scholar 

  20. A. Rolls, R. Shechter, and M. Schwartz, Nat. Rev. Neurosci., 10, No. 3, 235-241 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. B. Saha, M. Jaber, and A. Gaillard, Front. Cell. Neurosci., doi: 10.3389/fncel.2012.00014 (2012).

    Google Scholar 

  22. R. Shechter, A. London, and M. Schwartz, Nat. Rev. Immunol., 13, No. 3, 206-218 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. C. E. Sortwell, M. R. Pitzer, and T. J. Collier, Exp. Neurol., 165, No. 2, 268-277 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Sukhinich.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 139-148, July, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhinich, K.K., Kosykh, A.V. & Aleksandrova, M.A. Differentiation and Cell–Cell Interactions of Neural Progenitor Cells Transplanted into Intact Adult Brain. Bull Exp Biol Med 160, 115–122 (2015). https://doi.org/10.1007/s10517-015-3111-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-015-3111-6

Key Words

Navigation