Skip to main content
Log in

Robot social-aware navigation framework to accompany people walking side-by-side

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We present a novel robot social-aware navigation framework to walk side-by-side with people in crowded urban areas in a safety and natural way. The new system includes the following key issues: to propose a new robot social-aware navigation model to accompany a person; to extend the Social Force Model, “Extended Social-Force Model”, to consider the person and robot’s interactions; to use a human predictor to estimate the destination of the person the robot is walking with; and to interactively learning the parameters of the social-aware navigation model using multimodal human feedback. Finally, a quantitative metric based on people’s personal spaces and comfortableness criteria, is introduced in order to evaluate quantitatively the performance of the robot’s task. The validation of the model is accomplished throughout an extensive set of simulations and real-life experiments. In addition, a volunteers’ survey is used to measure the acceptability of our robot companion’s behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alami, R., Albu-Schaeffer, A., Bicchi, A., Bischoff, R., Chatila, R., & De Luca, A., et al. (2006). Safe and dependable physical human–robot interaction in anthropic domains: State of the art and challenges. In Proceedings of workshop on pHRI, international conference on intelligent robots and systems IROS, Citeseer (Vol. 6).

  • Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to mcmc for machine learning. Machine Learning, 50(1–2), 5–43.

    Article  MATH  Google Scholar 

  • Arras, K., Mozos, O., & Burgard, W. (2007). Using boosted features for the detection of people in 2d range data. In IEEE international conference on robotics and automation (pp. 3402–3407).

  • Bennewitz, M., Burgard, W., Cielniak, G., & Thrun, S. (2005). Learning motion patterns of people for compliant robot motion. The International Journal of Robotics Research, 24(1), 31–48.

    Article  Google Scholar 

  • Bergstrom, N., Kanda, T., Miyashita, T., Ishiguro, H., & Hagita, N. (2008). Modeling of natural human-robot encounters. In IEEE/RSJ international conference on intelligent robots and systems (pp. 2623–2629).

  • Burgard, W., Cremers, A., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., et al. (1999). Experiences with an interactive museum tour-guide robot. Artificial Intelligence, 114(1), 3–55.

    Article  MATH  Google Scholar 

  • Dautenhahn, K., Walters, M., Woods, S., Koay, K., Nehaniv, C., & Sisbot, A., et al. (2006). How may i serve you? A robot companion approaching a seated person in a helping context. In Proceedings of the 1st ACM SIGCHI/SIGART conference on Human–robot interaction, ACM (pp. 172–179).

  • Dautenhahn, K., Woods, S., Kaouri, C., Walters, M., Koay, K., & Werry, I. (2005). What is a robot companion-friend, assistant or butler? In IEEE/RSJ international conference on intelligent robots and systems (pp. 1192–1197).

  • Ferrer, G., & Sanfeliu, A. (2011). Comparative analysis of human motion trajectory prediction using minimum variance curvature. In Proceedings of the 6th international conference on Human–robot interaction (pp. 135–136). Lausanne, Switzerland: ACM.

  • Ferrer, G., & Sanfeliu, A. (2014). Bayesian human motion intentionality prediction in urban environments. Pattern Recognition Letters, 44, 134–140. doi:10.1016/j.patrec.2013.08.013.

    Article  Google Scholar 

  • Foka, A., & Trahanias, P. (2010). Probabilistic autonomous robot navigation in dynamic environments with human motion prediction. International Journal of Social Robotics, 2(1), 79–94.

    Article  Google Scholar 

  • Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive robots. Robotics and Autonomous Systems, 42(3), 143–166.

    Article  MATH  Google Scholar 

  • Garrell, A., & Sanfeliu, A. (2012). Cooperative social robots to accompany groups of people. The International Journal of Robotics Research, 31(13), 1675–1701.

    Article  Google Scholar 

  • Goldberg, D. (1988). Genetic algorithms in search. Optimization and machine learning. Boston: Addison-Wesley.

    Google Scholar 

  • Haasch, A., Hohenner, S., Hüwel, S., Kleinehagenbrock, M., Lang, S., Toptsis, I., & Fink, G., et al. (2004). Biron—The bielefeld robot companion. In Proceedings of the international workshop on advances in service robotics (pp. 27–32). Stuttgart, Germany: Fraunhofer IRB Verlag.

  • Hall, E. T. (1969). The hidden dimension. New York: Anchor Books.

    Google Scholar 

  • Helbing, D., & Molnár, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51(5), 4282.

    Article  Google Scholar 

  • Henry, P., Vollmer, C., Ferris, B., & Fox, D. (2010) Learning to navigate through crowded environments. In 2010 IEEE international conference on robotics and automation (ICRA), IEEE (pp. 981–986).

  • Huang, W. H., Fajen, B. R., Fink, J. R., & Warren, W. H. (2006). Visual navigation and obstacle avoidance using a steering potential function. Robotics and Autonomous Systems, 54(4), 288–299.

    Article  Google Scholar 

  • Ikeda, T., Chigodo, Y., Rea, D., Zanlungo, F., Shiomi, M., & Kanda, T. (2012). Modeling and prediction of pedestrian behavior based on the sub-goal concept. In Proceedings of robotics: Science and system (RSS).

  • Ishiguro, H., Ono, T., Imai, M., Maeda, T., Kanda, T., & Nakatsu, R. (2001). Robovie: an interactive humanoid robot. Industrial Robot: An International Journal, 28(6), 498–504.

    Article  Google Scholar 

  • Katagami, D., & Yamada, S. (2003). Active teaching for an interactive learning robot. In The 12th IEEE international workshop on robot and human interactive communication, IEEE (pp. 181–186).

  • Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile robots. In IEEE proceedings of the international conference on robotics and automation (Vol. 2, pp. 500–505).

  • Koay, K., Sisbot, E., Syrdal, D., Walters, M., Dautenhahn, K., & Alami, R. (2007). Exploratory studies of a robot approaching a person in the context of handing over an object. In Proceeding of AAAI-SS on multi-disciplinary collaboration for socially assistive robotics (pp. 18–24).

  • Koay, K., Zivkovic, Z., Krose, B., Dautenhahn, K., Walters, M., & Otero, N., et al. (2006a). Methodological issues of annotating vision sensor data using subjects’ own judgement of comfort in a robot human following experiment. In The 15th IEEE international symposium on robot and human interactive communication, IEEE (pp. 66–73).

  • Koay, K. L., Dautenhahn, K., Woods, S., & Walters, M. L. (2006b) Empirical results from using a comfort level device in human–robot interaction studies. In Proceedings of the 1st ACM SIGCHI/SIGART conference on Human–robot interaction, ACM (pp. 194–201).

  • Koren, Y., & Borenstein, J. (1991). Potential field methods and their inherent limitations for mobile robot navigation. In IEEE international conference on robotics and automation, IEEE (pp. 1398–1404).

  • Kuderer, M., Kretzschmar, H., Sprunk, C., & Burgard, W. (2012). Feature-based prediction of trajectories for socially compliant navigation. In: Proceedings of robotics: Science and systems (RSS).

  • Luber, M., Stork, J., Tipaldi, G., & Arras. K. (2010). People tracking with human motion predictions from social forces. In IEEE international conference on robotics and automation (pp. 464–469).

  • Luber, M., Tipaldi, G., & Arras, K. (2011a). Better models for people tracking. In IEEE international conference on robotics and automation (pp. 854–859).

  • Luber, M., Tipaldi, G., & Arras, K. (2011b). Place-dependent people tracking. The International Journal of Robotics Research, 30(3), 280–293.

    Article  MATH  Google Scholar 

  • Madhava Krishna, K., Alami, R., & Simeon, T. (2006). Safe proactive plans and their execution. Robotics and Autonomous Systems, 54(3), 244–255.

    Article  Google Scholar 

  • Michalowski, M., Sabanovic, S., & Simmons, R. (2006). A spatial model of engagement for a social robot. In: 9th IEEE international workshop on advanced motion control (pp. 762–767).

  • Nakauchi, Y., & Simmons, R. (2002). A social robot that stands in line. Autonomous Robots, 12(3), 313–324.

    Article  MATH  Google Scholar 

  • Olivera, V., & Simmons, R. (2002). Implementing human-acceptable navigational behavior and a fuzzy controller for an autonomous robot. In Proceedings WAF: 3rd workshop on physical agents (pp. 113–120). Spain: Murcia.

  • Pacchierotti, E., Christensen, H. I., & Jensfelt, P. (2006). Embodied social interaction for service robots in hallway environments. In: Field and service robotics (pp 293–304). Springer: Berlin

  • Pandey, A. K., & Rachid, A. (2009). A step towards a sociable robot guide which monitors and adapts to the person’s activities. In IEEE international conference on advanced robotics.

  • Pransky, J. (2004). Social adjustments to a robotic future. California: Wolf and Mallett.

    Google Scholar 

  • Rios-Martinez, J., Spalanzani, A., & Laugier, C. (2014). From proxemics theory to socially-aware navigation: A survey. International Journal of Social Robotics, 7(2), 137–153.

    Article  Google Scholar 

  • Sanfeliu, A., & Andrade-cetto, J. (2006). Ubiquitous networking robotics in urban settings. In Proceedings of workshop on network robot systems. toward intelligent robotic systems integrated with environments (pp. 10–13).

  • Satake, S., Kanda, T., Glas, D., Imai, M., Ishiguro, H., & Hagita, N. (2009). How to approach humans? Strategies for social robots to initiate interaction. In 4th ACM/IEEE international conference on human–robot interaction (pp. 109–116).

  • Shi, D., Collins, E., Donate, A., Liu, X., Goldiez, B., & Dunlap, D. (2008). Human-aware robot motion planning with velocity constraints. In International symposium on collaborative technologies and systems, IEEE (pp. 490–497).

  • Sisbot, E., Marin-Urias, L., Alami, R., & Simeon, T. (2007). A human aware mobile robot motion planner. IEEE Transactions on Robotics, 23(5), 874–883.

    Article  Google Scholar 

  • Stein, P., Spalanzani, A., Santosm, V., & Laugier, C. (2014). Leader following: A study on classification and selection. Robotics and Autonomous Systems,. doi:10.1016/j.robot.2014.09.028.

    Google Scholar 

  • Svenstrup, M., Bak, T., & Andersen, H. J. (2010). Trajectory planning for robots in dynamic human environments. In IEEE/RSJ international conference on intelligent robots and systems.

  • Tasaki, T., Matsumoto, S., Ohba, H., Toda, M., Komatani, K., & Ogata, T., et al. (2004). Dynamic communication of humanoid robot with multiple people based on interaction distance. In IEEE international workshop on robot and human interactive communication (pp. 71–76).

  • Thrun, S., Burgard, W., Fox, D., et al. (2005). Probabilistic robotics (Vol. 1). Cambridge, MA: MIT press.

  • Trulls, E., Corominas Murtra, A., Pérez-Ibarz, J., Ferrer, G., Vasquez, D., Mirats-Tur, J., et al. (2011). Autonomous navigation for mobile service robots in urban pedestrian environments. Journal of Field Robotics, 28(3), 329–354.

    Article  Google Scholar 

  • Vasquez, D., Okal, B., & Arras, K. O. (2014). Inverse reinforcement learning algorithms and features for robot navigation in crowds: An experimental comparison. In IEEE/RSJ international conference on intelligent robots and systems.

  • Walters, M., Dautenhahn, K., Woods, S., & Koay, K. (2007). Robotic etiquette: Results from user studies involving a fetch and carry task. In: 2nd ACM/IEEE international conference on human–robot interaction (pp. 317–324).

  • Wilkes, D., Pack, R., Alford, A., & Kawamura, K. (1997). Hudl, a design philosophy for socially intelligent service robots. In Socially intelligent agents (pp. 140–145). Technical report FS-97-02.AAAI Press.

  • Zanlungo, F., Ikeda, T., & Kanda, T. (2011). Social force model with explicit collision prediction. Europhys. Lett. (EPL), 93(6), 68005.

    Article  Google Scholar 

  • Ziebart, B. D., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K., & Bagnell, J. A., et al. (2009). Planning-based prediction for pedestrians. In IEEE/RSJ international conference on intelligent robots and systems (pp. 3931–3936).

  • Zinn, M., Khatib, O., Roth, B., & Salisbury, J. (2004). Playing it safe [human-friendly robots]. IEEE Robotics and Automation Magazine, 11(2), 12–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Ferrer.

Additional information

Gonzalo Ferrer and Anaís Garrell have contributed equally to this work.

This research was conducted at the Institut de Robòtica i Informàtica Industrial (CSIC-UPC). It was partially supported by CICYT Projects DPI2007-61452 and Ingenio Consolider CSD2007-018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer, G., Zulueta, A.G., Cotarelo, F.H. et al. Robot social-aware navigation framework to accompany people walking side-by-side. Auton Robot 41, 775–793 (2017). https://doi.org/10.1007/s10514-016-9584-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-016-9584-y

Keywords

Navigation