Skip to main content
Log in

Large-Scale Properties of the Tilt of Sunspot Groups and Joy’s Law Near the Solar Equator

  • Published:
Astrophysics Aims and scope

A physical mechanism is proposed for the formation of the tilt angle of groups of sunspots during the formation of active regions under the sun’s photosphere. The phenomena associated with the influence of Coriolis forces on the large-scale flows in supergranular convection in turbulent media are studied in detail. Based on calculations of the magnetic field in a model of a solar nonlinear dynamo, the orders of magnitude of this effect are estimated and the tilt angle is estimated in the band of latitudes in the “royal zone” of sunspot activity. This dynamo model is based on the balance of small- and large-scale magnetic helicities, and describes the formation of sunspots over the last five activity cycles (since 1964) and has been adapted for a broader class of magnetic manifestations of solar activity. The variation in the average tilt over these five activity cycles has been plotted and latitude-time diagrams of the distribution of this value constructed which fully satisfy Joy’s law and also show the local deviations from it within a limited range of latitudes in isolated phases of the solar cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Babcock, Astrophys. J. 133, 572 (1961).

    Article  ADS  Google Scholar 

  2. R. B. Leighton, Astrophys. J. 156, 1 (1969).

    Article  ADS  Google Scholar 

  3. S. D’Silva and A. R. Choudhuri, Astron. Astrophys. 272, 621 (1993).

    ADS  Google Scholar 

  4. A. G. Kosovichev, T. L. Duvall, and P. H. Scherrer, Solar Phys. 192, 159 (2000).

    Article  ADS  Google Scholar 

  5. N. K. Singh, H. Raichur, M. J. Käpylä, et al., Geophys. Astrophys. Fluid Dyn., arXiv:1808.08904 (2018).

    Google Scholar 

  6. N. Seehafer, Solar Phys. 125, 219 (1990).

    Article  ADS  Google Scholar 

  7. A. A. Pevtsov, R. C. Canfield, and T. R. Metcalf, Astrophys. J. 425, L117 (1994).

    Article  ADS  Google Scholar 

  8. S. D. Bao and H. Q. Zhang, Astrophys. J. 496, L43 (1998).

    Article  ADS  Google Scholar 

  9. M. Hagino and T. Sakurai, Publ. Astron. Soc. Japan. 56, 831 (2004).

    Article  ADS  Google Scholar 

  10. H. Zhang, T. Sakurai, A. Pevtsov, et al., Mon. Not. Roy. Astron. Soc. 402, L30 (2010).

    Article  ADS  Google Scholar 

  11. A. G. Kosovichev and J. O. Stenflo, Astrophys. J. Lett. 688(2), L115 (2008).

    Article  ADS  Google Scholar 

  12. K. A. Tlatova, V. V. Vasil’eva, and A. A. Pevtsov, Geomagnetism and Aeronomy, 55(7), 896 (2015).

    Article  ADS  Google Scholar 

  13. K. A. Tlatova, A. G. Tlatov, A. Pevtsov, et al., Solar Phys. 293, 118 (2018).

    Article  ADS  Google Scholar 

  14. A. Tlatov, E. Illarionov, D. Sokoloff, et al., Mon. Not. Roy. Astron. Soc. 432, 2975 (2013).

    Article  ADS  Google Scholar 

  15. E. Illarionov, A. Tlatov, and D. Sokoloff, Solar Phys. 290, 351 (2015).

    Article  ADS  Google Scholar 

  16. S. Chandrasekhar, Plasma Physics, University of Chicago Press, Chicago (1960).

    MATH  Google Scholar 

  17. T. Elperin, I. Golubev, N. Kleeorin, et al., Phys. of Fluids, 18 (12), 126601 (2006).

    Article  ADS  Google Scholar 

  18. M. Bukai, A. Eidelman, T. Elperin, et al., Phys. Rev. E, 79(6), 066302 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  19. Yu. V. Vandakurov, Convection on the Sun and the 11-year Cycle [in Russian], Nauka, Leningrad (1976).

  20. N. Baker and S. Tamesvary, Tables of Convective Stellar Envelope Models, NASA, New York (1966).

    Google Scholar 

  21. E. Gibson, The Quiescent Sun [Russian translation], Mir, Moscow (1977).

  22. N. I. Kleeorin and A. A. Ruzmaikin, Solar Phys. 131, 211 (1991).

    Article  ADS  Google Scholar 

  23. D. D. Sokolov, M. F’ok, and E. Nem-Rib, Magnitnaya gidrodinamika 31, 19 (1995).

    Google Scholar 

  24. T. S. Ivanova and A. A. Ruzmaikin, Soviet Astronomy 21, 479 (1977).

    ADS  Google Scholar 

  25. N. Kleeorin, I. Rogachevskii, and A. Ruzmaikin, Astron. Astrophys. 297, 159 (1995).

    ADS  Google Scholar 

  26. N. I. Kliorin and A. A. Ruzmaikin, Magnitnaya gidrodinamika 2, 17 (1982).

    Google Scholar 

  27. N. Kleeorin and A. Ruzmaikin, Solar Phys. 131, 211 (1991).

    Article  ADS  Google Scholar 

  28. N. Safiullin, N. Kleeorin, S. Porshnev, et al., J. Plasma Phys. 84, 735840306 (2018).

    Article  Google Scholar 

  29. N. Kleeorin, I. Rogachevskii, and A. Ruzmaikin, Sov. Astron. Lett. 15, 274 (1989).

    ADS  Google Scholar 

  30. I. Rogachevskii and N. Kleeorin, Phys. Rev. E, 75(4), 046305 (2007).

    Article  ADS  Google Scholar 

  31. A. Brandenburg, I. Rogachevskii, and N. Kleeorin, New Journal of Physics, 18, 125011 (2016).

    Article  ADS  Google Scholar 

  32. J. Warnecke, I. R. Losada, A. Brandenburg, et al., Astron. Astrophys. 589, A125 (2016).

    Article  Google Scholar 

  33. Ya. Kleeorin, N. Safiullin, N. Kleeorin, et al., Mon. Not. Roy. Astron. Soc. 460, 3960 (2016).

    Article  ADS  Google Scholar 

  34. N. Kleeorin, K. Kuzanyan, D. Moss, et al., Astron. Astrophys. 409, 1097 (2003).

    Article  ADS  Google Scholar 

  35. H. Zhang, D. Sokoloff, I. Rogachevskii, et al., Mon. Not. Roy. Astron. Soc. 365, 276 (2006).

    Article  ADS  Google Scholar 

  36. H. Zhang, D. Moss, N. Kleeorin, et al., Astrophys. J. 751, 47 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Kuzanyan.

Additional information

Translated from Astrofizika, Vol. 62, No. 2, pp. 297-312 (May 2019)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzanyan, K.M., Safiullin, N., Kleeorin, N. et al. Large-Scale Properties of the Tilt of Sunspot Groups and Joy’s Law Near the Solar Equator. Astrophysics 62, 261–275 (2019). https://doi.org/10.1007/s10511-019-09579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-019-09579-2

Keywords

Navigation