Skip to main content
Log in

Cosmic Rays From Supermassive Black Holes: Fluxes on the Earth And Extragalactic Diffuse Gamma and Neutrino Emission

  • Published:
Astrophysics Aims and scope

Cosmic rays at ultra-high energies (E > 4·1019 eV) accelerated by the electric fields of supermassive black holes are discussed. Two models of the acceleration are examined: when particles are accelerated by an electric field in an accretion disk and when they are accelerated by the field induced near a black hole. It is assumed that in these models generation of particles at energies in the 4·1019-1021 eV range is equiprobable, in addition a monoenergetic particle injection spectrum is possible. In the latter case, black holes with masses of ~109 solar masses are considered. It turns out that cosmic rays with these initial spectra make a small contribution to the flux of particles detected on the earth. In intergalactic space, however, these particles create a significant flux of diffuse gamma-ray emission compared to data obtained by the Fermi LAT (on board the Fermi space observatory). The intensity of neutrinos produced during propagation of cosmic rays in intergalactic space is also calculated. It is found that the model intensity of the cascade neutrinos is much lower than the measured intensity of astrophysical neutrinos. It is concluded that cosmic rays accelerated accelerated in these processes make a small contribution to the flux of particles on the earth, but these cosmic rays should be taken into account when analyzing the components of the extragalactic diffuse gamma-ray emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Greisen, Phys. Rev. Lett. 16, 748 (1966).

    Article  ADS  Google Scholar 

  2. G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966).

    ADS  Google Scholar 

  3. S. Hayakawa, Prog. Theor. Phys. 37, 594 (1966).

    Article  Google Scholar 

  4. O. Prilutsky and I. L. Rozental, Acta Phys. Hung. Suppl. 129, 51 (1970).

    Google Scholar 

  5. M. Ackermann, M. Ajello, A. Albert, et al., Astrophys. J. 799, 86A (2015).

    Article  ADS  Google Scholar 

  6. O. E. Kalashev, K. V. Ptitsyna, and S. V. Troitsky, Phys. Rev. D86 063005 (2012), (arXiv:1207. 2859 [astro-ph. HE]].

  7. G. Giacinti, M. Kachelriess, O. Kalashev, et al., Phys. Rev. D92, 083016 (2015), (arXiv:1507. 07534 v2[astro-ph. HE] (2015).

  8. V. Berezinsky, A. Gazizov, and O. Kalashev, Astropart. Phys. 84, 52 (2016), (arXiv:1606. 09293v2 [astro-ph. HE] (2016).

  9. E. Gavish and D. Eichler, Astrophys. J. 822, 56 (2016), (arXiv:1603.040 [astroph. HE] (2016).

  10. A. Yu. Neronov, D. V. Semikoz, and I. I. Tkachev, New J. Phys. 11, 065015 (2009), (arXiv: 0712. 1737v2 [astroph] (2012).

  11. A. V. Uryson, Astron. Lett. 27, 775 (2001).

    Article  ADS  Google Scholar 

  12. C. D. Haswell, T. Tajima, and J.-I. Sakai, Astrophys. J. 401, 495 (1992).

    Article  ADS  Google Scholar 

  13. N. S. Kardashev, Mon. Not. Roy. Astron. Soc. 522, 205 (1995).

    Google Scholar 

  14. A. A. Shatsky and N. S. Kardashev, Astron. Rep. 46, 639 (2002).

    Article  ADS  Google Scholar 

  15. A. F. Zakharov, N. S. Kardashev, V. N. Lukash, et al., Mon. Not. Roy. Astron. Soc. 342, 1325 (2003).

    Article  ADS  Google Scholar 

  16. G. Decerprit and D. Allard, Astron. Astrophys. 535, A66 (2011), (arXiv:1107. 3722v4 [astro-ph. HE] (2011).

  17. R. Aloisio, D. Bonciolic, A. di Matteo, et al., arXiv:1505.04020v3 [astro-ph. HE], (2015).

  18. O. E. Kalashev and E. Kido, JETP 120, 790 (2015).

    Article  ADS  Google Scholar 

  19. A. V. Uryson, Astron. Lett. 44, 541 (2018).

    Article  ADS  Google Scholar 

  20. M. Di Mauro, F. Donato, G. Lamanna, et al., Astrophys. J. 786, 129 (2014), (arXiv:1311. 5708 [astro-ph. HE] (2013).

  21. Y. Inoue, S. Inoue, M. Kobayashi, et al., Astrophys. J. 768, 197 (2013), (arXiv:1212.1683v2 [astro-ph. CO] (2013).

  22. R. J. Protheroe and P. L. Biermann, Astropart. Phys. 6, 45 (1996); 7, 181(E) (1997).

  23. P. P. Kronberg, in: R. Wielebinski and R. Beck, eds., Cosmic Magnetic Fields. Springer (2005), p. 9.

  24. W. Essey, S. Ando, and A. Kusenko, Astropart. Phys. 35, 135 (2011).

    Article  ADS  Google Scholar 

  25. A. V. Uryson, JETP 86, 213 (1998).

    Article  ADS  Google Scholar 

  26. T. A. Dzhatdoev, E. V. Khalikov, A. P. Kircheva, et al., Astron. Astrophys. 603, A59 (2017).

    Article  ADS  Google Scholar 

  27. Pierre Auger Collaboration: A. Aab, P. Abreu, M. Aglietta, et al. JCAP 06, 026 (2017), (arXiv:1612. 07155 [astroph. HE] (2017).

  28. V. Berezinsky and O. Kalashev, Phys. Rev. D24, 023007 (2016), arXiv:1603.03989v1 [astroph. HE] (2016).

  29. M. Di Mauro, arXiv:1601. 04323v1 [astro-ph. HE] (2016).

  30. IceCube Collaboration. arXiv:1705.07780v2 [astro-ph. HE] (2017).

  31. A. V. Uryson, Astron. Lett. 43, 529 (2017).

    Article  ADS  Google Scholar 

  32. B. Mutlu-Pakdil, M. S. Seigar, and B. L. Davis, Astrophys. J. 830, 117 (2016).

    Article  ADS  Google Scholar 

  33. N. P. Topchiev, A. M. Galper, V. Bonvicini, et al., J. Phys.: Conf. Ser. 798, 012011 (2017).

    Google Scholar 

  34. http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Uryson.

Additional information

Translated from Astrofizika, Vol. 62, No. 2, pp. 285-296 (May 2019)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uryson, A.V. Cosmic Rays From Supermassive Black Holes: Fluxes on the Earth And Extragalactic Diffuse Gamma and Neutrino Emission. Astrophysics 62, 251–260 (2019). https://doi.org/10.1007/s10511-019-09578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-019-09578-3

Keywords

Navigation