Skip to main content

Advertisement

Log in

Plane Symmetric Anisotropic Dark Energy Cosmological Model in the Bimetric Theory of Gravitation

  • Published:
Astrophysics Aims and scope

The plane symmetric space-times with anisotropic dark energy and with constant deceleration parameter have been derived by solving the Rosen's field equations in the Bimetric theory of gravitation. We explored both models in power law as well as in exponential law. In power law, the model attains both phases accelerating as well as decelerating in the expansion with anisotropic fluid, which is in the form of dark energy, and there is no chance of real matter in this power law. In exponential law, the model is dust, isotropized in nature with constant acceleration in the expansion. Further, other geometrical and physical aspects of the models are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Perlmutter et al., Astrophys. J., 483, 565, 1997.

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Nature, 391, 51, 1998.

    Article  ADS  Google Scholar 

  3. S. Perlmutter et al., Astrophys. J., 517, 565, 1999.

    Article  ADS  Google Scholar 

  4. A. G.Riess et al., Astron. J., 116, 1009, 1998.

    Article  ADS  Google Scholar 

  5. C. L. Bennett et al., Astrophys. J. Suppl., 148, 1, 2003.

    Article  ADS  Google Scholar 

  6. D. N. Spergel et al., Astrophys. J. Suppl., 148, 175, 2003.

    Article  ADS  Google Scholar 

  7. L. Verde et al., Mon. Not. Roy. Astron. Soc., 335, 432, 2002.

    Article  ADS  Google Scholar 

  8. E. Hawkins et al., Mon. Not. Roy. Astron. Soc., 346, 78, 2003.

    Article  ADS  Google Scholar 

  9. K. Abazajian et al., Phys. Rev., D 69, 103501, 2004.

    ADS  Google Scholar 

  10. G. Hinshaw et al., Astrophys. J. Suppl., 180, 225, 2009.

    Article  ADS  Google Scholar 

  11. S. Weinberg, Rev. Mod. Phys., 61, 1, 1989.

    Article  ADS  Google Scholar 

  12. R. Stabell and S. Refsdal, Mon. Not. Roy. Astron. Soc., 132, 379, 1966.

    Article  ADS  Google Scholar 

  13. M. S. Madsen and G. F. R. Ellis, Mon. Not. Roy. Astron. Soc., 234, 67, 1988.

    Article  ADS  Google Scholar 

  14. M. S. Madsen et al., Phys. Rev., D 46, 1399, 1992.

    ADS  Google Scholar 

  15. V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys., D 9, 373, 2000.

    ADS  Google Scholar 

  16. S. M. Carroll, Living Rev. Rel., 4, 1, 2001.

    Article  Google Scholar 

  17. P. J. E. Peebles and B. Ratra, Rev. Mod. Phys., 75, 559, 2003.

    Article  ADS  Google Scholar 

  18. T. Padmanabhan, Phys. Rep., 380, 235, 2003.

    Article  ADS  MathSciNet  Google Scholar 

  19. V. Sahni, Lecture Notes Physics, 653, 141, 2004.

    Article  ADS  Google Scholar 

  20. D. C. Rodriguse, Phys. Rev., D 77, 023534, 2008.

    ADS  Google Scholar 

  21. T. Koivisto and D. F. Mota, Astrophys. J., 679, 1, 2008.

    Article  ADS  Google Scholar 

  22. P. de Bernardis et al., Nature, 391, 5, 1998.

    Google Scholar 

  23. S. Hanany et al., Astrophys. J., 493, L53, 2000.

    Google Scholar 

  24. K. Abazajian et al., (SDSS Collab.), Astron. J., 126, 2081, 2003.

  25. K. Abazajian et al., (SDSS Collab.), Astron. J., 128, 502, 2004.

  26. K. Abazajian et al., Astron. J., 129, 1755, 2005.

    Article  ADS  Google Scholar 

  27. A. Clocchiatti et al., (High Z SN Search Collab.), Astrophys. J., 642, 1, 2006.

  28. D. N. Spergel et al., Astrophys. J. Suppl., 170, 377, 2007.

    Article  ADS  Google Scholar 

  29. E. Komastu et al., (WMAP Collab.), Astrophys. J. Suppl., 180, 330, 2009.

  30. E. Komastu et al., (WMAP Collab.), Astrophys. J. Suppl., 192, 18, 2011.

  31. G. Hinshaw et al., (WMAP Collab.), Astrophys. J. Suppl., 208, 19, 2013.

  32. P. A. R. Ade et al., (Plank Collab.), arXiv:1303.5076, 2013.

  33. P. A. R. Ade et al., (Plank Collab.), arXiv:1303:5082, 2013.

  34. T. Vidyasagar et al., Astrophys. Space Sci., 349, 467, 2014.

    Article  ADS  Google Scholar 

  35. M. F. A. Da Silva and A. Wang, Phys. Lett., A 244, 462, 1998.

  36. K. Anguige, Class. Quantum Gravi., 17, 2117, 2000.

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Nouri-Zonoz and A. R. Tavanfar, Class. Quantum Gravi., 18, 4293, 2001.

    Article  ADS  Google Scholar 

  38. A. Pradhan and H. R. Pandey, Int. J. Mod. Phys., D 12, 941, 2003.

  39. A. Pradhan, K. K. Rai, and A. K. Yadav, Braz. J. Phys., 37, 1084, 2007.

    Article  ADS  Google Scholar 

  40. A. K. Yadav, Int. J. Theor. Phys., 49, 1140, 2010.

    Article  Google Scholar 

  41. O. Akarsu and C. B. Kilinc, Gen. Relativ. Gravit., 42, 119, 2010.

    Article  ADS  Google Scholar 

  42. O. Akarsu and C. B. Kilinc, Gen. Relativ. Gravit., 42, 763, 2010.

    Article  ADS  Google Scholar 

  43. N. Rosen, Gen. Rel. and Grav., 4, 435, 1973.

    Article  ADS  Google Scholar 

  44. N. Rosen, Gen. Rel. Grav., 6, 259, 1975.

    Article  ADS  Google Scholar 

  45. N. Rosen, Plenum Press, London, 273, 1977.

  46. T. M. Karade, Indian J. Pure-appl. Math., 11, 1202, 1980.

  47. M. Israelit, Gen. Rel. Gravit., 13, 681, 1981.

    Article  ADS  Google Scholar 

  48. H. Yilmaz, Gen. Relativ. Gravit., 6, 269, 1975.

    Article  ADS  Google Scholar 

  49. D. R. K. Reddy and N. Venkateswara Rao, Astrophys. Space Sci., 257, 293, 1998.

    Article  ADS  Google Scholar 

  50. S. D. Katore and R. S. Rane, Pramana J. Phys., 67, 227, 2006.

    Article  ADS  Google Scholar 

  51. G. S. Khadekar and S. D. Tade, Astrophys. Space Sci., 310, 47, 2007.

    Article  ADS  Google Scholar 

  52. M. S. Borkar and S. S. Charjan, Int. J. Appl. Math., 22, 445, 2009.

    MathSciNet  Google Scholar 

  53. M. S. Borkar and S. S. Charjan, J. Ind. Acad. Math., 32(1), 147, 2010.

    Google Scholar 

  54. M. S. Borkar and S. S. Charjan, An Int. J. (AAM), 5(9), 96, 2010.

    Google Scholar 

  55. M. S. Borkar and S. S. Charjan, An Int. J. (AAM), 5(2), 563, 2010.

  56. M. S. Borkar et al., Int. J. Appl. Math., 28(2), 1249, 2013.

    Google Scholar 

  57. M. S. Borkar and S. S. Charjan, An Int. J. AAM, 8(1), 116, 2013.

    Google Scholar 

  58. M. S. Borkar and P. V. Gayakwad, Am.n J. Pure Appl. Math., 2(1), 1, 2013.

    Article  Google Scholar 

  59. M. S. Borkar and N. P. Gaikwad, Int. J. Math. Sci., 34(1), 1406, 2014.

    Google Scholar 

  60. M. S. Borkar and P. V. Gayakwad, Sci. Res. J. Math., 10(3), 28, 2014.

    Google Scholar 

  61. M. S. Borkar and P. V. Gayakwad, An Int. J. (AAM), 9(1), 260, 2014.

    Google Scholar 

  62. M. S. Borkar and A. Ameen, Int. J. Mod. Phys. D, 24(2), 1550019, 2015.

    Article  ADS  Google Scholar 

  63. N. P. Gaikwad et al., Chin. Phys. Lett., 28(8), 089803, 2011.

    Article  ADS  Google Scholar 

  64. S. M. Carroll, M. Hoffiman, and M. Trodden, Phys. Rev, D 68, 023509, 1992.

    ADS  Google Scholar 

  65. C. B. Collins et al., Gen. Relativ. Gravit., 12, 805, 1980.

    Article  ADS  Google Scholar 

  66. M. S. Berman, Nuovo Cimento B, 74, 182, 1983.

    Article  ADS  Google Scholar 

  67. J. L. Tonry et al., Astrophys. J., 594, 1, 2003.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Borkar.

Additional information

Published in Astrofizika, Vol. 60, No. 2, pp. 263-276 (May 2017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borkar, M.S., Ameen, A. Plane Symmetric Anisotropic Dark Energy Cosmological Model in the Bimetric Theory of Gravitation. Astrophysics 60, 242–258 (2017). https://doi.org/10.1007/s10511-017-9479-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-017-9479-4

Keywords

Navigation