Skip to main content
Log in

A comparison of Solar Cycle 23rd and 24th for Solar type II radio bursts associated with coronal mass ejection in relation to interplanetary features

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We investigate the association of flare-CME events accompanied with DH type II radio bursts with interplanetary features such as magnetic field (IMF, B), geomagnetic storms (GSs), and cosmic ray intensity (CRI) from 2008 to 2019, covering the whole Solar Cycle 24th and compared this study with our previous study for the same in Solar Cycle 23rd (Chandra and Bhatt 2018). We have divided our selected data into two groups: in the first group, we have 6 events that lie under the CME span, and in the second group, 40 events that lie outside the CME span. In Solar Cycle 23rd, we considered a total of 114 events, out of which 43 were lying under the CME span and 71 were lying outside the CME span. We observed that activity in Solar Cycle 24th is less than in Solar Cycle 23rd. We observed that flare-CME accompanied with DH type II radio burst is inconsistent with CSHKP flare-CME and it agrees with our previous result for Solar Cycle 23rd. Applying the Chree analysis by the superposed epoch method, we found that under the CME span events, the maximum increase in IMF occurred one day before the events that occurred outside the CME span. Further, in Solar Cycle 24th, we observed that events in which flares lie outside the CME span are more geoeffective, whereas, in Solar Cycle 23rd, events in which flares lie under the CME span are more geoeffective. Thus, flare position with respect to the CME span plays a key role in the geo-effectiveness of the CME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a
Fig. 2b
Fig. 3a
Fig. 3b
Fig. 4a
Fig. 4b

Similar content being viewed by others

References

  • Arowolo, O.A., Akala, A.O., Oyeyemi, E.O.: Interplanetary origins of some intense geomagnetic storms during solar cycle 24 and the responses of African equatorial/low latitude ionosphere to them. J. Geophys. Res. Space Phys. 126(2), e27929 (2021). https://doi.org/10.1029/2020JA027929

    Article  ADS  Google Scholar 

  • Aslam, O.P.M., Badruddin: Study of the geoeffectiveness and galactic cosmic-ray response of VarSITI-ISEST campaign events in solar cycle 24. Sol. Phys. 292(9), 135 (2017). https://doi.org/10.1007/s11207-017-1160-x

    Article  ADS  Google Scholar 

  • Badruddin, R.S., Yadav, N.R.: On the major solar flare activity in solar cycle 19, 20 & 21 (1955–1979). Indian J. Radio Space Phys. 2 (1983)

  • Belov, A., Abunin, A., Abunina, M., Eroshenko, E., Oleneva, V., Yanke, V., Papaioannou, A., Mavromichalaki, H., Gopalswamy, N., Yashiro, S.: Coronal mass ejections and non-recurrent forbush decreases. Sol. Phys. 289(10), 3949–3960 (2014). https://doi.org/10.1007/s11207-014-0534-6

    Article  ADS  Google Scholar 

  • Bhatt, B., Prasad, L., Chandra, H., Garia, S.: Solar flares associated coronal mass ejections in case of type II radio bursts. Astrophys. Space Sci. 361(8), 265 (2016). https://doi.org/10.1007/s10509-016-2857-2

    Article  ADS  Google Scholar 

  • Bruevich, E., Yakunina, G.V.: 24th cycle of solar activity: geoefficiency of flares. Geomagn. Aeron. 60, 876–880 (2020)

    Article  ADS  Google Scholar 

  • Cane, H.V.: Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55–77 (2000). https://doi.org/10.1023/A:1026532125747

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., Von Rosenvinge, T.T.: J. Geophys. Res. 101 (1996)

  • Cane, H.V., Richardson, I.G., Wibberenz, G.: Helios 1 and 2 observations of particle decreases, ejecta, and magnetic clouds. J. Geophys. Res. 102(A4), 7075–7086 (1997). https://doi.org/10.1029/97JA00149

    Article  ADS  Google Scholar 

  • Chandra, H., Bhatt, B.: Solar flares associated coronal mass ejection accompanied with DH type II radio burst in relation with interplanetary magnetic field, geomagnetic storms and cosmic ray intensity. New Astron. 60, 22–32 (2018). https://doi.org/10.1016/j.newast.2017.10.001

    Article  ADS  Google Scholar 

  • Dremukhina, L., Yermolaev, Y.I., Lodkina, I.G.: Differences in the dynamics of the asymmetrical part of the magnetic disturbance during the periods of magnetic storms induced by different interplanetary sources. Geomagn. Aeron. 60, 714–726 (2020)

    Article  ADS  Google Scholar 

  • Dungey, J.W.: The Interplanetary Magnetic Field and the Auroral Zones. Scientific Report No. 157, (1962) https://www.osti.gov/biblio/4752157

  • Echer, E., Gonzalez, W., Tsurutani, B., Gonzalez, A.: Interplanetary conditions causing intense geomagnetic storms (Dst ≤-100 nT) during solar cycle 23 (1996–2006). J. Geophys. Res 113 (2008). https://doi.org/10.1029/2007JA012744

  • Forbush, S.E.: On the effects in the cosmic-ray intensity observed during magnetic storms. Phys. Rev. 51, 1108 (1937). https://doi.org/10.1103/PhysRev.51.1108.3

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: Energetic particles related with coronal and interplanetary shocks. Notes Phys. 725, 139–160 (2007)

    Google Scholar 

  • Gopalswamy, N.: Solar connections of geoeffective magnetic structures. J. Atmos. Sol.-Terr. Phys. 70(17), 2078–2100 (2008). https://doi.org/10.1016/j.jastp.2008.06.010

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P.A.: Properties of DH Type II radio bursts and their space weather implications. In: 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), pp. 1–4 (2019)

    Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Yashiro, S.: A catalog of type II radio bursts observed by Wind/WAVES and their statistical properties. Sun Geosph. 14, 111–121 (2019). https://doi.org/10.31401/SunGeo.2019.02.03

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: Characteristics of coronal mass ejections associated with long-wavelength type II radio bursts. J. Geophys. Res. 106(A12), 29219–29229 (2001). https://doi.org/10.1029/2001JA000234

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Mäkelä, P., Xie, H., Akiyama, S., Monstein, C.: Extreme kinematics of the 2017 September 10 solar eruption and the spectral characteristics of the associated energetic particles. Astrophys. J. Lett. 863(2), L39 (2018). https://doi.org/10.3847/2041-8213/aad86c

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Xie, H., Lepping, R.P., Howard, R.A.: Solar source of the largest geomagnetic storm of cycle 23. Geophys Res Lett 32 (2005). https://doi.org/10.1029/2005GL022348

  • Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Mäkelä, P.: Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24. J. Geophys. Res. 120(11), 9221–9245 (2015). https://doi.org/10.1002/2015JA021446

    Article  Google Scholar 

  • Gosling, J.T.: Coronal mass ejections: the link between solar and geomagnetic activity. Phys. Fluids B 5, 2638 (1993a). https://doi.org/10.1063/1.860701

    Article  ADS  Google Scholar 

  • Gosling, J.T.: The solar flare myth. J. Geophys. Res. Space Phys. 98(A11), 18937–18949 (1993b). https://doi.org/10.1029/93JA01896

    Article  ADS  Google Scholar 

  • Harra, L.K., Schrijver, C.J., Janvier, M., Toriumi, S., Hudson, H., Matthews, S., Woods, M.M., Hara, H., Guedel, M., Kowalski, A., Osten, R., Kusano, K., Lueftinger, T.: The characteristics of solar X-class flares and CMEs: a paradigm for stellar superflares and eruptions? Sol. Phys. 291(6), 1761–1782 (2016). https://doi.org/10.1007/s11207-016-0923-0

    Article  ADS  Google Scholar 

  • Joshi, B., Ibrahim, M.S., Shanmugaraju, A., Chakrabarty, D.: A major geoeffective CME from NOAA 12371: initiation, CME-CME interactions, and interplanetary consequences. Sol. Phys. 293, 107 (2018). https://doi.org/10.1007/s11207-018-1325-2

    Article  ADS  Google Scholar 

  • Kahler, S.W., Sheeley, N.R. Jr, Liggett, M., E. O. Hulbert Center for Space Research, D., Washington, & Big Bear Solar Observatory, C., Pasadena: Coronal mass ejections and associated X-ray flare durations. Astrophys. J., USA 344, 1026 (1989). https://doi.org/10.1086/167869

    Article  Google Scholar 

  • Kane, R.P.: Severe geomagnetic storms and Forbush decreases: interplanetary relationships reexamined. Ann. Geophys. 28, 479–489 (2010)

    Article  ADS  Google Scholar 

  • Kharayat, H., Prasad, L.: Study of cosmic ray intensity and geomagnetic storms with solar wind parameters during the period 1998–2005. Astrophys. Space Sci. 362, 1–9 (2016)

    Google Scholar 

  • Kovaltsov, G.A., Usoskin, I.G.: Occurrence probability of large solar energetic particle events: assessment from data on cosmogenic radionuclides in lunar rocks. Sol. Phys. 289(1), 211–220 (2014). https://doi.org/10.1007/s11207-013-0333-5

    Article  ADS  Google Scholar 

  • Kumar, S., Veenadhari, B., Tulasi Ram, S., Selvakumaran, R., Mukherjee, S., Singh, R., Kadam, B.D.: Estimation of interplanetary electric field conditions for historical geomagnetic storms. J. Geophys. Res. Space Phys. 120(9), 7307–7317 (2015). https://doi.org/10.1002/2015JA021661

    Article  ADS  Google Scholar 

  • Lara, A., Gopalswamy, N., Nunes, S., Muñoz, G., Yashiro, S.: A statistical study of CMEs associated with metric type II bursts. Geophys. Res. Lett. 30 (2003). https://doi.org/10.1029/2002GL016481

  • Lingri, D., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V., Abunin, A., Abunina, M.: Solar activity parameters and associated forbush decreases during the minimum between cycles 23 and 24 and the ascending phase of cycle 24. Sol. Phys. 291(3), 1025–1041 (2016). https://doi.org/10.1007/s11207-016-0863-8

    Article  ADS  Google Scholar 

  • Manoharan, P.K., Mahalakshmi, K., Johri, A., Jackson, B.V., Ravikumar, D., Kalyanasundaram, K., Subramanian, S.P., Mittal, A.K.: Current State of Reduced Solar Activity: Intense Geomagnetic Storms (2018)

    Google Scholar 

  • Manoharan, P.K., Maia, D., Johri, A., Induja, M.S.: Interplanetary consequences of coronal mass ejection events occurred during 18-25 June 2015. In: Dorotovic, I., Fischer, C.E., Temmer, M. (eds.) Coimbra Sol. Phys. Meeting: Ground-Based Solar Observations in the Space Instrumentation Era (2016)

    Google Scholar 

  • Mishra, A.P., Mishra, V.K., Mishra, B.N., Gupta, M.: Heliographic distribution of bright solar flares and association of Forbush-decreases with flares and coronal mass ejections pp. 237–243 (2008). https://www.researchgate.net/publication/255462117

  • Okike, O.: Forbush decreases: algorithm generated dataset. Data Brief 33, 106463 (2020). https://doi.org/10.1016/j.dib.2020.106463

    Article  Google Scholar 

  • Papaioannou, A., Belov, A., Mavromichalaki, H., Eroshenko, E.A., Yanke, V.G., Asvestari, E., Abunin, A., Abunina, M.: The first Forbush decrease of solar cycle 24. J. Phys. Conf. Ser. 409, 012202 (2013)

    Article  Google Scholar 

  • Pappa Kalaivani, P., Umapathy, S., Shanmugaraju, A., Prakash, O.: Astrophys. Space Sci. 330 (2010). https://doi.org/10.1007/s10509-010-0405-z

  • Patel, B.D., Joshi, B., Cho, K.-S., Kim, R.-S.: DH Type II radio bursts during solar cycles 23 and 24: frequency-dependent classification and their flare-CME associations. Sol. Phys. 296(9), 142 (2021). https://doi.org/10.1007/s11207-021-01890-6

    Article  ADS  Google Scholar 

  • Pchelkin, V.V.: Relation of Cosmic Ray Intensity as Registered by Ground-Based Detectors to Solar Wind Parameters (2003)

  • Prakash, O., Umapathy, S., Shanmugaraju, A., Vasanth, V.: Solar Phys. 281 (2012). https://doi.org/10.1007/s11207-012-0111-9

  • Reiner, M.J., Jackson, B.V., Webb, D.F., Mizuno, D.R., Kaiser, M.L., Bougeret, J.-L.: J. Geophys. Res. 110 (2005)

  • Richardson, I.G., Cliver, E.W., Cane, H.V.: Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000. Geophys. Res. Lett. 28(13), 2569–2572 (2001). https://doi.org/10.1029/2001GL013052

    Article  ADS  Google Scholar 

  • Rusin, V., Rybansky, M., Scheirich, L.: Sol. Phys. 61 (1979). https://doi.org/10.1007/BF00150415

  • Rycroft, M.: Magnetic storms: Tsurutani B. T., Gonzalez W. D., Kamide Y. and Arballo J. K. (eds), 1997, 266 pp., Geophysical Monograph, Volume 98, AGU, $70 ($49 AGU member price), hb, ISBN 0-87590-0801. J. Atmos. Sol.-Terr. Phys. 60(3), 405 (1998). https://doi.org/10.1016/S1364-6826(97)00106-5.

    Article  ADS  Google Scholar 

  • Schwadron, N.A., Townsend, L.W., Kozarev, K.A., Dayeh, M.A., Cucinotta, F.A., Desai, M., Golightly, M.J., Hassler, D., Hatcher, R., Kim, M.-Y., Posner, A., PourArsalan, M., Spence, H.E., Squier, R.K.: Earth-Moon-Mars Radiation Environment Module framework. Space Weather 8 (2010)

  • Scolini, C., Verbeke, C., Poedts, S., Chané, E., Pomoell, J., Zuccarello, F.: Effect of the initial shape of coronal mass ejections on 3-D MHD simulations and geoeffectiveness predictions. Space Weather 16, 754–771 (2018)

    Article  ADS  Google Scholar 

  • Shaikh, Z., Bhaskar, A., Raghav, A.: The presence of turbulent and ordered local structure within the ICME shock-sheath and its contribution to forbush decrease. Astrophys. J. 844(2), 121 (2017). https://doi.org/10.3847/1538-4357/AA729F

    Article  ADS  Google Scholar 

  • Shanmugaraju, A., Bendict Lawrance, M.: Halo coronal mass ejections and their relation to DH type-II radio bursts. Sol. Phys. 290(10), 2963–2973 (2015). https://doi.org/10.1007/s11207-015-0765-1

    Article  ADS  Google Scholar 

  • Smith, C.W., McCracken, K.G., Schwadron, N.A., Goelzer, M.L.: The heliospheric magnetic flux, solar wind proton flux, and cosmic ray intensity during the coming solar minimum. Space Weather 12(7), 499–507 (2014). https://doi.org/10.1002/2014SW001067

    Article  ADS  Google Scholar 

  • de Souza, A.M., Echer, E., Bolzan, M., Hajra, R.: A study on the main periodicities in interplanetary magnetic field Bz component and geomagnetic AE index during HILDCAA events using wavelet analysis. J. Atmos. Sol.-Terr. Phys. 149, 81–86 (2016)

    Article  ADS  Google Scholar 

  • Sugiura, M.: Annals of the International Geophysical Year, Vol. 35 p. 945. Pergamon Press, Oxford (1964)

    Google Scholar 

  • Suresh, K., Prasanna Subramanian, S., Shanmugaraju, A., Vršnak, B., Umapathy, S.: Study of interplanetary CMEs/shocks during solar cycle 24 using drag-based model: the role of solar wind. Sol. Phys. 294, 47 (2019). https://doi.org/10.1007/s11207-019-1432-8

    Article  ADS  Google Scholar 

  • Syed Ibrahim, M., Joshi, B., Cho, K-.S., Kim, R-.S., Moon, Y-.J.: Interplanetary coronal mass ejections during solar cycles 23 and 24: Sun–Earth propagation characteristics and consequences at the near-Earth region. Sol. Phys. 294, 54 (2019). https://doi.org/10.1007/s11207-019-1443-5

    Article  ADS  Google Scholar 

  • Tsurutani, B.T.: The interplanetary causes of magnetic storms, substorms and geomagnetic quiet. In: Daglis, I.A. (ed.) Space Storms and Space Weather Hazards, p. 103 (2001)

    Chapter  Google Scholar 

  • Tsurutani, B.T., Lakhina, G.S., Hajra, R.: The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are. Nonlinear Process. Geophys. 27(1), 75–119 (2020). https://doi.org/10.5194/npg-27-75-2020

    Article  ADS  Google Scholar 

  • Verma, P.L., Tiwari Kumar Yash, R.K., Nigam, S.K., Sharma, A.B., Khare, N.: Halo coronal mass ejections: the cause of large Forbush decreases and geomagnetic storms. In: Proceeding of the 31st ICRC (2009)

    Google Scholar 

  • Wang, Y.-M., Colaninno, R.: Is solar cycle 24 producing more coronal mass ejections than cycle 23? Astrophys. J. 784(2), L27 (2014). https://doi.org/10.1088/2041-8205/784/2/l27

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: Coronal mass ejections and the solar cycle variation of the Sun’s open flux. Astrophys. J. 80(2), L24 (2015). https://doi.org/10.1088/2041-8205/809/2/l24

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: Comparisons of characteristics of magnetic clouds and cloud-like structures during 1995–2012. Sol. Phys. 290, 1243–1269 (2014)

    Article  ADS  Google Scholar 

  • Xiang, N.B., Qu, Z.N.: Evolutionary characteristics of the interplanetary magnetic field intensity. Astron. J. 156(4), 152 (2018). https://doi.org/10.3847/1538-3881/aadb91

    Article  ADS  Google Scholar 

  • Yashiro, S., Michałek, G., Akiyama, S., Gopalswamy, N., Howard, R.A.: Spatial relationship between solar flares and coronal mass ejections. Astrophys. J. 673, 1174–1180 (2008)

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C-.C., Yashiro, S., Zhukov, A.N.: Solar and interplanetary sources of major geomagnetic storms (\(\mbox{Dst}\leq -100~\mbox{nT}\)) during 1996–2005. J. Geophys. Res. 112 (2007a)

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: Solar and interplanetary sources of major geomagnetic storms (\(\mbox{Dst} \leq-100\) nT) during 1996-2005. J. Geophys. Res. Space Phys. 112(A10), A10102 (2007b). https://doi.org/10.1029/2007JA012321

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the excellent Wind/WAVES and ground-based radio spectrograph teams for providing the type-II data in online catalogues. The authors would also like to thank the Omniweb data centre (omniweb.gsfc.nasa.gov/form/dx1.html) and the Moscow Neutron Monitor Station (cr0.izmiran.rssi.ru/mosc/main.htm) for providing data.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in the organization of the manuscript.

Corresponding author

Correspondence to Beena Bhatt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, H., Bhatt, B. A comparison of Solar Cycle 23rd and 24th for Solar type II radio bursts associated with coronal mass ejection in relation to interplanetary features. Astrophys Space Sci 367, 128 (2022). https://doi.org/10.1007/s10509-022-04156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-022-04156-0

Keywords

Navigation