Skip to main content
Log in

Dynamical configurations of celestial systems comprised of multiple irregular bodies

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This manuscript considers the main features of the nonlinear dynamics of multiple irregular celestial body systems. The gravitational potential, static electric potential, and magnetic potential are considered. Based on the three established potentials, we show that three conservative values exist for this system, including a Jacobi integral. The equilibrium conditions for the system are derived and their stability analyzed. The equilibrium conditions of a celestial system comprised of \(n\) irregular bodies are reduced to \(12n - 9\) equations. The dynamical results are applied to simulate the motion of multiple-asteroid systems. The simulation is useful for the study of the stability of multiple irregular celestial body systems and for the design of spacecraft orbits to triple-asteroid systems discovered in the solar system. The dynamical configurations of the five triple-asteroid systems 45 Eugenia, 87 Sylvia, 93 Minerva, 216 Kleopatra, and 136617 1994CC, and the six-body system 134340 Pluto are calculated and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Araujo, B.R.A.N., Winter, O.C., Prado, A.F.B.A., et al.: Stability regions around the components of the triple system 2001 SN263. Mon. Not. R. Astron. Soc. 423(4), 3058–3073 (2012)

    Article  ADS  Google Scholar 

  • Beauvalet, L., Lainey, V., Arlot, J.E., et al.: Constraining multiple systems with GAIA. Planet. Space Sci. 73(1), 62–65 (2012)

    Article  ADS  Google Scholar 

  • Beauvalet, L., Marchis, F., Lainey, V., et al.: A new dynamical solution of (45) Eugenia’s satellites. In: EPSC-DPS Joint Meeting, vol. 6, pp. 728–729 (2011)

    Google Scholar 

  • Beauvalet, L., Marchis, F.: Multiple asteroid systems (45) Eugenia and (87) Sylvia: sensitivity to external and internal perturbations. Icarus 241, 13–25 (2014)

    Article  ADS  Google Scholar 

  • Behrend, R., Bernasconi, L., Roy, R., et al.: Four new binary minor planets: (854) Frostia, (1089) Tama, (1313) Berna, (4492) Debussy. Astron. Astrophys. 446(3), 1177–1184 (2006)

    Article  ADS  Google Scholar 

  • Benecchi, S.D., Noll, K.S., Grundy, W.M., et al.: (47171) 1999 TC 36, a transneptunian triple. Icarus 207(2), 978–991 (2010)

    Article  ADS  Google Scholar 

  • Berthier, J., Vachier, F., Marchis, F., et al.: Physical and dynamical properties of the main belt triple asteroid (87) Sylvia. Icarus 239(1), 118–130 (2014)

    Article  ADS  Google Scholar 

  • Brozović, M., Benner, L.A.M., Nolan, M.C., et al.: Radar images and shape model of a triple Asteroid (136617) 1994CC. Bull. Am. Astron. Soc. 42, 1080 (2010)

    ADS  Google Scholar 

  • Brozović, M., Benner, L.A.M., Taylor, P.A., et al.: Radar and optical observations and physical modeling of triple near-Earth Asteroid (136617) 1994 CC. Icarus 216(1), 241–256 (2011)

    Article  ADS  Google Scholar 

  • Brozović, M., Showalter, M.R., Jacobson, R.A., et al.: The orbits and masses of satellites of Pluto. Icarus 246, 317–329 (2015)

    Article  ADS  Google Scholar 

  • Buie, M.W., Tholen, D.J., Grundy, W.M.: The orbit of Charon is circular. Astron. J. 144(1), 15 (2012)

    Article  ADS  Google Scholar 

  • Cendra, H., Marsden, J.E.: Geometric mechanics and the dynamics of asteroid pairs. Dyn. Syst. 20(1), 3–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • De Matos, C.J.: Electromagnetic dark energy and gravitoelectrodynamics of superconductors. Physica C, Supercond. 468(3), 210–213 (2008)

    Article  ADS  Google Scholar 

  • Descamps, P.: Equilibrium figures of inhomogeneous synchronous binary asteroids. Icarus 207(2), 758–768 (2010)

    Article  ADS  Google Scholar 

  • Descamps, P., Marchis, F., Berthier, J.: Triplicity and physical characteristics of Asteroid (216) Kleopatra. Icarus 211(2), 1022–1033 (2011)

    Article  ADS  Google Scholar 

  • Dumas, C., Carry, B., Hestroffer, D., et al.: High-contrast observations of (136108) Haumea-A crystalline water-ice multiple system. Astron. Astrophys. 528, A105 (2011)

    Article  ADS  Google Scholar 

  • Fahnestock, E.G., Scheeres, D.J.: Simulation of the full two rigid body problem using polyhedral mutual potential and potential derivatives approach. Celest. Mech. Dyn. Astron. 96(3–4), 317–339 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fang, J., Margot, J.L., Brozović, M., et al.: Orbits of near-Earth asteroid triples 2001 SN263 and 1994 CC: properties, origin, and evolution. Astron. J. 141(5), 154 (2011)

    Article  ADS  Google Scholar 

  • Fang, J., Margot, J.L., Rojo, P.: Orbits, masses, and evolution of main belt triple (87) Sylvia. Astron. J. 144(2), 70 (2012)

    Article  ADS  Google Scholar 

  • Frouard, J., Compère, A.: Instability zones for satellites of asteroids: the example of the (87) Sylvia system. Icarus 220(1), 149–161 (2012)

    Article  ADS  Google Scholar 

  • Gabern, F., Wang, S.K., Marsden, J.E.: Parking a spacecraft near an asteroid pair. J. Guid. Control Dyn. 29(3), 544–553 (2006)

    Article  ADS  Google Scholar 

  • Ghaboussi, J., Barbosa, R.: Three-dimensional discrete element method for granular materials. Int. J. Numer. Anal. Methods 14(7), 451–472 (1990)

    Article  Google Scholar 

  • Hirabayashi, M., Scheeres, D.J.: Recursive computation of mutual potential between two polyhedra. Celest. Mech. Dyn. Astron. 117(3), 245–262 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Jacobson, S.A., Scheeres, D.J.: Long-term stable equilibria for synchronous binary asteroids. Astrophys. J. Lett. 736, L19 (2011)

    Article  ADS  Google Scholar 

  • Jiang, Y.: Equilibrium points and periodic orbits in the vicinity of asteroids with an application to 216 Kleopatra. Earth Moon Planets 115(1–4), 31–44 (2015)

    Article  ADS  MATH  Google Scholar 

  • Jiang, Y., Baoyin, H.: Orbital mechanics near a rotating asteroid. J. Astrophys. Astron. 35(1), 17–38 (2014)

    Article  ADS  Google Scholar 

  • Jiang, Y., Baoyin, H., Li, J., Li, H.: Orbits and manifolds near the equilibrium points around a rotating asteroid. Astrophys. Space Sci. 349(1), 83–106 (2014)

    Article  ADS  Google Scholar 

  • Jiang, Y., Baoyin, H., Li, H.: Collision and annihilation of relative equilibrium points around asteroids with a changing parameter. Mon. Not. R. Astron. Soc. 452(4), 3924–3931 (2015a)

    Article  ADS  Google Scholar 

  • Jiang, Y., Yu, Y., Baoyin, H.: Topological classifications and bifurcations of periodic orbits in the potential field of highly irregular-shaped celestial bodies. Nonlinear Dyn. 81(1–2), 119–140 (2015b)

    Article  MathSciNet  Google Scholar 

  • Jiang, Y., Baoyin, H., Li, H.: Periodic motion near the surface of asteroids. Astrophys. Space Sci. 360(2), 63 (2015c)

    Article  ADS  Google Scholar 

  • Jiang, Y., Baoyin, H., Wang, X., et al.: Order and chaos near equilibrium points in the potential of rotating highly irregular-shaped celestial bodies. Nonlinear Dyn. 83(1), 231–252 (2016)

    Article  MathSciNet  Google Scholar 

  • Koon, W.S., Marsden, J.E., Ross, S.D., et al.: Geometric mechanics and the dynamics of asteroid pairs. Ann. N.Y. Acad. Sci. 1017(1), 11–38 (2004)

    Article  ADS  Google Scholar 

  • Kozai, Y.: The motion of a close Earth satellite. Astron. J. 64(9), 367–377 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  • Lagerros, J.S.V.: Thermal physics of asteroids. III. Irregular shapes and albedo variegations. Astron. Astrophys. 325, 1226–1236 (1997)

    ADS  Google Scholar 

  • Lee, T., Leok, M., McClamroch, N.H.: Lie group variational integrators for the full body problem in orbital mechanics. Celest. Mech. Dyn. Astron. 98(2), 121–144 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lee, M.H., Peale, S.J.: On the orbits and masses of the satellites of the Pluto–Charon system. Icarus 184(2), 573–583 (2006)

    Article  ADS  Google Scholar 

  • Maciejewski, A.J.: Reduction, relative equilibria and potential in the two rigid bodies problem. Celest. Mech. Dyn. Astron. 63(1), 1–28 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marchis, F., Descamps, P., Hestroffer, D., et al.: Discovery of the triple asteroid system 87 Sylvia. Nature 436(7052), 822–824 (2005)

    Article  ADS  Google Scholar 

  • Marchis, F., Lainey, V., Descamps, P., et al.: A dynamical solution of the triple asteroid system (45) Eugenia. Icarus 210(2), 635–643 (2010)

    Article  ADS  Google Scholar 

  • Marchis, F., Descamps, P., Dalba, P., et al.: A detailed picture of the (93) Minerva triple system. EPSC-DPS Joint Meeting. 1, 653–654 (2011)

    ADS  Google Scholar 

  • Marchis, F., Enriquez, J.E., Emery, J.P., et al.: Multiple asteroid systems: dimensions and thermal properties from Spitzer Space Telescope and ground-based observations. Icarus 221(2), 1130–1161 (2012)

    Article  ADS  Google Scholar 

  • Marchis, F., Vachier, F., Ďurech, J., et al.: Characteristics and large bulk density of the C-type main-belt triple asteroid (93) Minerva. Icarus 224(1), 178–191 (2013)

    Article  ADS  Google Scholar 

  • Matthews, L.S., Hyde, T.W.: Gravitoelectrodynamics in Saturn’s F ring: encounters with Prometheus and Pandora. J. Phys. A, Math. Gen. 36(22), 6207 (2003)

    Article  ADS  Google Scholar 

  • Matthews, L.S., Hyde, T.W.: Effects of the charge-dipole interaction on the coagulation of fractal aggregates. IEEE Trans. Plasma Sci. 32(2), 586–593 (2004)

    Article  ADS  Google Scholar 

  • Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  • Michel, P., Richardson, D.C.: Collision and gravitational reaccumulation: possible formation mechanism of the asteroid Itokawa. Astron. Astrophys. 554, L1 (2013)

    Article  ADS  Google Scholar 

  • Mindlin, R.D., Deresiewica, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20, 327–344 (1953)

    MathSciNet  MATH  Google Scholar 

  • Mishra, B.K., Rajamani, R.K.: The discrete element method for the simulation of ball Mills. Appl. Math. Model. 16(11), 598–604 (1992)

    Article  MATH  Google Scholar 

  • Neese, C. (ed.): Small body radar shape models V2.0. NASA Planetary Data System 2004

  • Pinilla-Alonso, N., Brunetto, R., Licandro, J., et al.: The surface of (136108) Haumea (2003 EL61), the largest carbon-depleted object in the trans-Neptunian belt. Astron. Astrophys. 496, 547–556 (2009)

    Article  ADS  Google Scholar 

  • Richardson, D.C.: A self-consistent numerical treatment of fractal aggregate dynamics. Icarus 115(2), 320–335 (1995)

    Article  ADS  Google Scholar 

  • Richardson, D.C., Leinhardt, Z.M., Melosh, H.J., et al.: Gravitational aggregates: evidence and evolution. Asteroids III 1, 501–515 (2002)

    ADS  Google Scholar 

  • Richardson, D.C., Bottke, W.F., Love, S.G.: Tidal distortion and disruption of Earth-crossing asteroids. Icarus 134(1), 47–76 (1998)

    Article  ADS  Google Scholar 

  • Richardson, D.C., Michel, P., Walsh, K.J., et al.: Numerical simulations of asteroids modelled as gravitational aggregates with cohesion. Planet. Space Sci. 57(2), 183–192 (2009)

    Article  ADS  Google Scholar 

  • Salo, H., Schmidt, J.: N-body simulations of viscous instability of planetary rings. Icarus 206(2), 390–409 (2010)

    Article  ADS  Google Scholar 

  • Sarli, B., Winter, O., Paglione, P., et al.: Strategies for exploring the triple system 2001sn263—target of the aster mission. In: 39th COSPAR Scientific Assembly, Mysore, India, vol. 1680 (2012)

    Google Scholar 

  • Scheeres, D.J.: Stability in the full two-body problem. Celest. Mech. Dyn. Astron. 83(1), 155–169 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Scheeres, D.J.: Bounds on rotation periods of disrupted binaries in the full 2-body problem. Celest. Mech. Dyn. Astron. 89(1), 127–140 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Scheeres, D.J.: Relative equilibria for general gravity fields in the sphere-restricted full 2-body problem. Celest. Mech. Dyn. Astron. 94(3), 317–349 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Scheeres, D.J.: Minimum energy configurations in the N-body problem and the celestial mechanics of granular systems. Celest. Mech. Dyn. Astron. 113(3), 291–320 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Showalter, M.R., Hamilton, D.P.: Resonant interactions and chaotic rotation of Pluto’s small moons. Nature 522(7554), 45–49 (2015)

    Article  ADS  Google Scholar 

  • Sidi, M.J.: Spacecraft Dynamics and Control, p. 45. Cambridge Univ. Press, Cambridge (1997)

    Book  Google Scholar 

  • Stansberry, J.A., Grundy, W.M., Margot, J.L., et al.: The albedo, size, and density of binary Kuiper belt object (47171) 1999 TC36. Astrophys. J. 643(1), 556–566 (2006)

    Article  ADS  Google Scholar 

  • Vera, J.A.: Dynamics of a triaxial gyrostat at a Lagrangian equilibrium of a binary asteroid. Astrophys. Space Sci. 323(4), 375–382 (2009a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Vera, J.A.: Eulerian equilibria of a triaxial gyrostat in the three body problem: rotational Poisson dynamics in Eulerian equilibria. Nonlinear Dyn. 55(1–2), 191–201 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  • Vera, J.A., Vigueras, A.: Hamiltonian dynamics of a gyrostat in the n-body problem: relative equilibria. Celest. Mech. Dyn. Astron. 94(3), 289–315 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Vokrouhlický, D.: (3749) Balam: a very young multiple asteroid system. Astrophys. J. Lett. 706(1), 37–40 (2009)

    Article  ADS  Google Scholar 

  • Walsh, K.J., Richardson, D.C.: Binary near-Earth asteroid formation: rubble pile model of tidal disruptions. Icarus 180(1), 201–216 (2006)

    Article  ADS  Google Scholar 

  • Werner, R.A., Scheeres, D.J.: Mutual potential of homogeneous polyhedra. Celest. Mech. Dyn. Astron. 91(3–4), 337–349 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Winter, O.C., Boldrin, L.A.G., Neto, E.V.: On the stability of the satellites of asteroid 87 Sylvia. Mon. Not. R. Astron. Soc. 395(1), 218–227 (2009)

    Article  ADS  Google Scholar 

  • Zotos, E.E., Caranicolas, N.D.: Are semi-numerical methods an effective tool for locating periodic orbits in 3d potentials? Nonlinear Dyn. 70(1), 279–287 (2012)

    Article  MathSciNet  Google Scholar 

  • Zotos, E.E.: Escape dynamics and fractal basin boundaries in Seyfert galaxies. Nonlinear Dyn. 80(3), 1109–1131 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 11372150), the National Basic Research Program of China (973 Program, 2012CB720000), and the State Key Laboratory of Astronautic Dynamics Foundation (No. 2015ADL-DW02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jiang.

Electronic Supplementary Material

Appendices

Appendix A: The static electric potential and magnetic potential

1.1 A.1 The potential and dynamic equation relative to the inertial space

In this section, we present the static electric potential and magnetic potential of multiple irregular bodies, as well as the dynamic equation relative to the inertial space.

The total static electric potential energy can be written as

$$\begin{aligned} U_{\mathit{se}} =& - \sum_{k = 1}^{n - 1} \sum _{j = k + 1}^{n} \frac{1}{4\pi \varepsilon_{0}} \\ &{}\times\int_{\beta_{k}} \int_{\beta_{j}} \frac{\rho_{\mathit{se}} ( \mathbf{D}_{k} ) \rho_{\mathit{se}} ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{k} ) }{ \Vert \mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{A}_{j} \mathbf{D}_{j} + \mathbf{r}_{k} - \mathbf{r}_{j} \Vert }, \end{aligned}$$
(A.1)

and the total magnetic potential energy can be written as

$$\begin{aligned} U_{m} =& - \sum_{k = 1}^{n - 1} \sum _{j = k + 1}^{n} \frac{\mu_{0}}{4 \pi } \\ &{}\times \int_{\beta_{k}} \int_{\beta_{j}} \frac{\mathbf{J} ( \mathbf{D}_{k} ) \cdot \mathbf{J} ( \mathbf{D} _{j} ) dV ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{k} ) }{\Vert \mathbf{A}_{k}\mathbf{D} _{k} - \mathbf{A}_{j}\mathbf{D}_{j} + \mathbf{r}_{k} - \mathbf{r}_{j} \Vert }. \end{aligned}$$
(A.2)

Thus, the total energy of the system becomes

$$\begin{aligned} H =& T + U_{g} + U_{e} + U_{m} \\ =& \frac{1}{2}\sum_{k = 1}^{n} \bigl( m _{k}\Vert \dot{\mathbf{r}}_{k} \Vert ^{2} + \langle \varPhi _{k},\mathbf{I}_{k}\varPhi_{k} \rangle \bigr) \\ &{}- \sum_{k = 1}^{n - 1} \sum_{j = k + 1}^{n} \int_{\beta_{k}} \int_{\beta_{j}} \biggl[ G\rho_{g} ( \mathbf{D}_{k} ) \rho _{g} ( \mathbf{D}_{j} ) \\ &{} + \frac{1}{4\pi \varepsilon_{0}}\rho_{\mathit{se}} ( \mathbf{D}_{k} ) \rho_{\mathit{se}} ( \mathbf{D}_{j} ) + \frac{\mu_{0}}{4\pi } \mathbf{J} ( \mathbf{D}_{k} ) \cdot \mathbf{J} ( \mathbf{D}_{j} ) \biggr] \\ &{}\times\frac{dV ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{k} ) }{\Vert \mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{A}_{j} \mathbf{D}_{j} + \mathbf{r}_{k} - \mathbf{r}_{j} \Vert } \end{aligned}$$
(A.3)

The total static electric force acting on \(\beta_{k}\) can be written as

$$\begin{aligned} \mathbf{f}_{\mathit{se}}^{k} =& - \frac{1}{4\pi \varepsilon_{0}} \\ &{}\times \sum _{j = 1,j \ne k}^{n} \int_{\beta_{k}} \int_{\beta_{j}} \frac{ ( \mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{A}_{j} \mathbf{D}_{j} + \mathbf{r}_{k} - \mathbf{r}_{j} ) }{ \Vert \mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{A}_{j} \mathbf{D}_{j} + \mathbf{r}_{k} - \mathbf{r}_{j} \Vert ^{3}} \\ &{}\times\rho_{\mathit{se}} ( \mathbf{D}_{k} ) \rho_{\mathit{se}} ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{k} ) , \end{aligned}$$
(A.4)

and the total magnetic force acting on \(\beta_{k}\) can be written as

$$\begin{aligned} \mathbf{f}_{m}^{k} =& - \frac{\mu_{0}}{4\pi } \\ &{}\times \sum _{j = 1,j \ne k} ^{n} \int_{\beta_{k}} \int_{\beta_{j}} \frac{ ( \mathbf{A} _{k}\mathbf{D}_{k} - \mathbf{A}_{j}\mathbf{D}_{j} + \mathbf{r}_{k} - \mathbf{r}_{j} ) }{\Vert \mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{A}_{j} \mathbf{D}_{j} + \mathbf{r}_{k} - \mathbf{r}_{j} \Vert ^{3}} \\ &{}\times\mathbf{J} ( \mathbf{D}_{k} ) \cdot \mathbf{J} ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{k} ) . \end{aligned}$$
(A.5)

The resultant static electric torque acting on \(\beta_{k}\) can be expressed as

$$\begin{aligned} \mathbf{n}_{\mathit{se}}^{k} =& \frac{1}{4\pi \varepsilon_{0}} \\ &{}\times \sum _{j = 1,j \ne k}^{n} \int_{\beta_{k}} \int_{\beta_{j}} \frac{ ( \mathbf{A}_{k}\mathbf{D}_{k} + \mathbf{r}_{k} ) \times ( \mathbf{A}_{j}\mathbf{D}_{j} + \mathbf{r} _{j} ) }{\Vert \mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{A}_{j}\mathbf{D}_{j} + \mathbf{r}_{k} - \mathbf{r}_{j} \Vert ^{3}} \\ &{}\times\rho_{\mathit{se}} ( \mathbf{D}_{k} ) \rho_{\mathit{se}} ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{k} ) , \end{aligned}$$
(A.6)

and the resultant magnetic torque acting on \(\beta_{k}\) can be expressed as

$$\begin{aligned} \mathbf{n}_{m}^{k} =& \frac{\mu_{0}}{4\pi } \\ &{}\times \sum _{j = 1,j \ne k} ^{n} \int_{\beta_{k}} \int_{\beta_{j}} \frac{ ( \mathbf{A} _{k}\mathbf{D}_{k} + \mathbf{r}_{k} ) \times ( \mathbf{A}_{j}\mathbf{D}_{j} + \mathbf{r}_{j} ) }{ \Vert \mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{A}_{j} \mathbf{D}_{j} + \mathbf{r}_{k} - \mathbf{r}_{j} \Vert ^{3}} \\ &{}\times \mathbf{J} ( \mathbf{D}_{k} ) \cdot \mathbf{J} ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{k} ) . \end{aligned}$$
(A.7)

Then the dynamical equation relative to the inertial space is now

{ p ˙ k = f g k + f se k + f m k , r ˙ k = p k m k , K ˙ k = n g k + n se k + n m k , A ˙ k = ψ k A k , k=1,2,,n.
(A.8)

The three conservative values of the dynamics equation are

$$ \begin{aligned}[c] &H = T + U_{g} + U_{\mathit{se}} + U_{m}, \\ &\mathbf{p} = \sum_{k = 1}^{n} \mathbf{p}_{k},\\ &\mathbf{K} = \sum_{k = 1}^{n} \mathbf{K}_{k}. \end{aligned} $$
(A.9)

1.2 A.2 The total static electric potential energy and the total magnetic potential energy in the body-fixed frame of \(\beta_{n}\)

The total static electric potential energy and the total magnetic potential energy can be written relative to the body-fixed frame of \(\beta_{n}\) as follows:

$$ \left \{ \textstyle\begin{array}{rcl} \displaystyle U_{\mathit{se}} &=& \displaystyle - \sum_{k = 1}^{n - 1} \sum_{j = k + 1}^{n} \frac{1}{4\pi \varepsilon_{0}}\\ &&\displaystyle{}\times\int_{\beta_{k}} \int_{\beta_{j}} \frac{\rho_{\mathit{se}} ( \mathbf{D}_{k} ) \rho_{\mathit{se}} ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{k} ) }{ \Vert \mathbf{A}_{n}^{T}\mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{A}_{n}^{T}\mathbf{A}_{j}\mathbf{D}_{j} + \mathbf{R}_{kn} - \mathbf{R}_{jn} \Vert }, \\ \displaystyle U_{m} &=& \displaystyle - \sum_{k = 1}^{n - 1} \sum_{j = k + 1}^{n} \frac{\mu_{0}}{4 \pi }\\ \displaystyle &&\displaystyle{}\times\int_{\beta_{k}} \int_{\beta_{j}} \frac{\mathbf{J} ( \mathbf{D}_{k} ) \cdot \mathbf{J} ( \mathbf{D} _{j} ) dV ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{k} ) }{\Vert \mathbf{A}_{n}^{T} \mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{A}_{n}^{T} \mathbf{A}_{j}\mathbf{D}_{j} + \mathbf{R}_{kn} - \mathbf{R}_{jn} \Vert }. \end{array}\displaystyle \right. $$
(A.10)

If we denote \(U = U_{g} + U_{\mathit{se}} + U_{m}\), the dynamical equation of the system is also Eq. (13). The torque is

$$ \left\{ \textstyle\begin{array}{l} \boldsymbol{\mu }^{k} = \boldsymbol{\mu }_{g}^{k} + \boldsymbol{\mu }_{e}^{k} + \boldsymbol{\mu }_{m}^{k},\quad k = 1,2, \ldots ,n - 1, \\ \boldsymbol{\mu }^{n} = \boldsymbol{\mu }_{g}^{n} + \boldsymbol{\mu } _{\mathit{se}}^{n} + \boldsymbol{\mu }_{m}^{n}, \end{array}\displaystyle \right. $$
(A.11)

where

$$ \left\{ \textstyle\begin{array}{rcl} \displaystyle \boldsymbol{\mu }_{\mathit{se}}^{k} &=& \displaystyle - \frac{1}{4\pi \varepsilon_{0}}\\ &&{}\times\displaystyle\sum_{k = 1}^{n - 1} \sum_{j = k + 1}^{n} \int_{\beta_{k}} \int_{\beta_{j}} \mathbf{A}_{n}^{T}\mathbf{A}_{k}\mathbf{D}_{k}\\ &&\displaystyle{} \times \frac{ ( \mathbf{A}_{n}^{T}\mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{A}_{n}^{T}\mathbf{A}_{j}\mathbf{D}_{j} + \mathbf{R}_{kn} - \mathbf{R}_{jn} ) }{\Vert \mathbf{A}_{n}^{T}\mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{A}_{n}^{T}\mathbf{A}_{j}\mathbf{D}_{j} + \mathbf{R}_{kn} - \mathbf{R}_{jn} \Vert ^{3}} \\ &&\displaystyle{} \times \rho_{\mathit{se}} ( \mathbf{D}_{k} ) \rho_{\mathit{se}} ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{k} ) \\ \displaystyle \boldsymbol{\mu }_{m}^{k} &=& \displaystyle - \frac{\mu_{0}}{4\pi }\\ &&{}\times \displaystyle\sum_{k = 1}^{n - 1} \sum_{j = k + 1}^{n} \int_{\beta_{k}} \int_{\beta_{j}} \mathbf{A}_{n}^{T}\mathbf{A}_{k}\mathbf{D}_{k} \\ &&\displaystyle{} \times \frac{ ( \mathbf{A}_{n}^{T}\mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{A}_{n}^{T}\mathbf{A}_{j}\mathbf{D}_{j} + \mathbf{R}_{kn} - \mathbf{R}_{jn} ) }{\Vert \mathbf{A}_{n}^{T}\mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{A}_{n}^{T}\mathbf{A}_{j}\mathbf{D}_{j} + \mathbf{R}_{kn} - \mathbf{R}_{jn} \Vert ^{3}}\\ &&\displaystyle{}\times\mathbf{J} ( \mathbf{D}_{k} ) \cdot \mathbf{J} (\mathbf{D}_{j} ) dV ( \mathbf{D}_{j} ) dV (\mathbf{D}_{k}) \end{array}\displaystyle \right. $$
(A.12)

and

$$ \left\{ \textstyle\begin{array}{rcl} \displaystyle \boldsymbol{\mu }_{\mathit{se}}^{n} &=& \displaystyle\frac{1}{4\pi \varepsilon_{0}}\sum_{k = 1} ^{n - 1} \sum_{j = k + 1}^{n} \int_{\beta_{k}} \int_{\beta_{j}} \mathbf{D}_{n} \\ &&\displaystyle{} \times \frac{ ( \mathbf{A}_{n}^{T} \mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{D}_{n} + \mathbf{R}_{kn} ) }{\Vert \mathbf{A}_{n}^{T} \mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{D}_{n} + \mathbf{R}_{kn} \Vert ^{3}}\\ &&\displaystyle{} \times \rho_{\mathit{se}} ( \mathbf{D}_{k} ) \rho_{\mathit{se}} ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{k} ), \\ \displaystyle \boldsymbol{\mu }_{m}^{n} &=& \displaystyle\frac{\mu_{0}}{4\pi } \sum_{k = 1}^{n - 1} \sum_{j = k + 1}^{n} \int_{\beta_{k}} \int_{\beta_{j}} \mathbf{D} _{n}\\ &&\displaystyle{} \times \frac{ ( \mathbf{A}_{n}^{T}\mathbf{A}_{k} \mathbf{D}_{k} - \mathbf{D}_{n} + \mathbf{R}_{kn} ) }{ \Vert \mathbf{A}_{n}^{T}\mathbf{A}_{k}\mathbf{D}_{k} - \mathbf{D}_{n} + \mathbf{R}_{kn} \Vert ^{3}}\\ &&\displaystyle{} \times \mathbf{J} ( \mathbf{D}_{k} ) \cdot \mathbf{J} ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{j} ) dV ( \mathbf{D}_{k} ). \end{array}\displaystyle \right. $$
(A.13)

Careful analysis of the motion of multiple-asteroid systems indicates that the static electric force and the magnetic force acting between each asteroid are negligible. Therefore,

$$U = U_{g}\quad \mbox{and}\quad \left\{\textstyle\begin{array}{l@{\quad }l} \boldsymbol{\mu }^{k} = \boldsymbol{\mu }_{g}^{k}, & k = 1,2, \ldots ,n - 1\\ \boldsymbol{\mu }^{n} = \boldsymbol{\mu }_{g}^{n} \end{array}\displaystyle \right. $$

are established for multiple-asteroid systems in the Solar system in Eqs. (13) and (15).

Appendix B: Initial parameters

Table 1 Initial conditions for calculation of dynamical configurations
Table 2 Initial conditions for calculation of the dynamical configurations of the six-body system (134340) Pluto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhang, Y., Baoyin, H. et al. Dynamical configurations of celestial systems comprised of multiple irregular bodies. Astrophys Space Sci 361, 306 (2016). https://doi.org/10.1007/s10509-016-2884-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2884-z

Keywords

Navigation