Skip to main content
Log in

Growth and blood chemistry of juvenile Neotropical catfish (Lophiosilurus alexandri) self-feeding on diets that differ in protein-to-energy (P:E) ratio

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

This study evaluated the growth and blood biochemistry were examined in juvenile Lophiosilurus alexandri that were self-feeding on feeds with different protein-to-energy (P:E) ratios. Juveniles (21.10 ± 0.39 g) were stocked at a density of six fish/tank (40 L) photoperiod 12L:12D, equipped with an on-demand feeder connected to a photoelectric cell. The 50-day experiment evaluated isoenergetic diets (17.65 MJ/kg) with crude protein levels from 25 to 42% and P:E of 14.56, 17.43, 20.44, and 23.91 g protein/MJ, in four replications, in a completely randomized design. The 23.91 g protein/MJ diet had the lowest leftover food and daily intake, while the 14.56 g protein/MJ diet had the highest leftovers. Polynomial regression analysis showed that the P:E ratios affected weight, average daily consumption per fish, protein efficiency, and weight gain had their lowest estimated values at 17.80, 21.23, 19.24, and 17.77 g protein/MJ, respectively. Feed conversion ratio peaked at 15.48 g protein/MJ, while the viscerosomatic index and carcass lipid had the lowest values at 22.74 and 20.03 g protein/MJ, respectively. Glucose, cholesterol, and low-density lipoprotein (LDL) were lower for animals fed a diet containing 24.17, 22.38, and 17.25 g protein/MJ, respectively. The total protein showed a increasing linear effect as the P:E ratio increased. High-density lipoprotein (HDL) had its highest value at 22.28 g protein/MJ. Thus, diets with an P:E ratio close to 23.91 g protein/MJ provide better adaptation of L. alexandri juveniles to the self-feeding system, along with better growth rates and blood biochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available from the author, Fabio Aremil Costa dos Santos, upon reasonable request.

Code availability

Not applicable.

References 

  • Abdel-Tawwab M, Ahmad MH, Khattab YAE, Shalaby AME (2010) Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture 298:267–274. https://doi.org/10.1016/j.aquaculture.2009.10.027

    Article  CAS  Google Scholar 

  • Aliyu-Paiko M, Hashim R, Shu-Chien AC (2010) Influence of dietary lipid/protein ratio on survival, growth, body indices and digestive lipase activity in Snakehead (Channa striatus, Bloch 1793) fry reared in re-circulating water system. Aquac Nut 16(5):466–474

    Article  CAS  Google Scholar 

  • Almeida Bicudo ÁJ, Sado RY, Cyrino JEP (2009) Growth and haematology of pacu, Piaractus mesopotamicus, fed diets with varying protein to energy ratio. Aquac Res 40:486–495. https://doi.org/10.1111/j.1365-2109.2008.02120.x

    Article  CAS  Google Scholar 

  • Al-Saraji AYJ, Nasir N (2013) Effect of different dietary protein and fats on some biochemical blood parameters in common carp fingerlings (Cyprinus Carpio L ) Reared in Float Cages. Mesopot J Mar Sci 4:293–296

    Google Scholar 

  • Ananias IDMC, de Melo CL, Costa DC, Ferreira AL, Martins EDFF, Takata R, Luz RK (2022) Menthol as anesthetic for juvenile Lophiosilurus alexandri: Induction and recovery time, ventilatory frequency, hematology and blood biochemistry. Aquaculture 546:737373

    Article  CAS  Google Scholar 

  • Andrew JE, Noble C, Kadri S, Jewell H, Huntingford FA (2002) The effect of demand feeding on swimming speed and feeding responses in Atlantic salmon Salmo salar L., gilthead sea bream Sparus aurata L. and European sea bass Dicentrarchus labrax L. in sea cages. Aquac Res 33(7):501–507

    Article  Google Scholar 

  • AOAC (2012) Official method of analysis: association of analytical chemists. 19th Edition, Washington DC, 121–130.

  • Bai SC, Wang X, Cho E (1999) Optimum dietary protein level for maximum growth of juvenile yellow puffer. Fisheries Sci 65:380–383. https://doi.org/10.2331/fishsci.65.380

    Article  CAS  Google Scholar 

  • Baki B, Yücel S (2017) Feed cost/production income analysis of seabass (Dicentrarchus labrax) aquaculture. Int J Ecosyst Ecol Sci 7:859–864

    Google Scholar 

  • Becker AG, Luz RK, Mattioli CC, Nakayama CL, Silva WDS, Leme FDOP, Baldisserotto B (2017) Can the essential oil of Aloysia triphylla have anesthetic effect and improve the physiological parameters of the carnivorous freshwater catfish Lophiosilurus alexandri after transport? Aquaculture 481:184–190

    Article  CAS  Google Scholar 

  • Benhaïm D, Akian DD, Ramos M, Ferrari S, Yao K, Bégout ML (2017) Self-feeding behaviour and personality traits in tilapia: A comparative study between Oreochromis niloticus and Sarotherodon melanotheron. Appl Anim Behav Sci 187:85–92. https://doi.org/10.1016/j.applanim.2016.12.004

    Article  Google Scholar 

  • Bertucci C, Domenici E (2012) Reversible and covalent binding of drugs to human serum albumin: methodological approaches and physiological relevance. Curr Med Chem 9:1463–1481. https://doi.org/10.2174/0929867023369673

    Article  Google Scholar 

  • Borges P, Medale F, Dias J, Valente LM (2013) Protein utilisation and intermediary metabolism of Senegalese sole (Solea senegalensis) as a function of protein: lipid ratio. Brit Jour Nut 109(8):1373–1381

    Article  CAS  Google Scholar 

  • Boujard T, Médale F (1994) Regulation of voluntary feed intake in juvenile rainbow trout fed by hand or by self-feeders with diets containing two different protein/energy ratios. Aquat Living Resour 7:211–215. https://doi.org/10.1051/alr:1994023

    Article  Google Scholar 

  • Campeche DFB, Andrade DHH, Souza AM, Melo JFB, Bezerra RS (2018) Dietary protein:lipid ratio changes growth, digestive enzyme activity, metabolic profile and haematological parameters in hybrid surubim (Pseudoplatystoma fasciatum × Leiarius marmoratus). Aquac Res 49:2486–2494. https://doi.org/10.1111/are.13708

    Article  CAS  Google Scholar 

  • Chai XJ, Ji WX, Han H, Dai YX, Wang Y (2013) Growth, feed utilization, body composition and swimming performance of giant croaker, Nibea japonica Temminck and Schlegel, fed at different dietary protein and lipid levels. Aquac Nut 19(6):928–935

    Article  CAS  Google Scholar 

  • Chen G, Zhang M, Zhang J, Dong H, Zhou H, Tang B, Huang J, Shi G, Jiang L, Wu Z (2009) The effects of different levels of dietary protein and L-carnitine on blood sugar and lipids of the new GIFT strain of juvenile Nile tilapia (Oreochromis niloticus). The Sci World J 9:1197–1205. https://doi.org/10.1100/tsw.2009.129

    Article  CAS  Google Scholar 

  • Cho CY (1992) Feeding systems for rainbow trout and other salmonids with reference to current estimates of energy and protein requirements. Aquaculture 100:107–123. https://doi.org/10.1016/0044-8486(92)90353-M

    Article  Google Scholar 

  • Coldebella IJ, Neto JR, Mallmann CA, Veiverberg CA, Bergamin GT, Pedron FA, Ferreira D, Barcellos LJG (2011) The effects of different protein levels in the diet on reproductive indexes of Rhamdia quelen females. Aquaculture 312:137–144. https://doi.org/10.1016/j.aquaculture.2010.12.021

    Article  CAS  Google Scholar 

  • Cordeiro NIS, Costa DC, Silva W, Takata R, Miranda-Filho KC, Luz RK (2016) High stocking density during larviculture and effect of size and diet on production of juvenile Lophiosilurus alexandri Steindachner, 1876 (Siluriformes: Pseudopimelodidae). J Appl Ichthyol 32:61–66. https://doi.org/10.1111/jai.12963

    Article  Google Scholar 

  • Costa DC, Silva WDS, Melillo Filho R, Miranda Filho KC, dos Santos JCE, Luz RK (2015) Capture, adaptation and artificial control of reproduction of Lophiosilurus alexandri: A carnivorous freshwater species. Anim Reprod Sci 159:148–154

    Article  PubMed  Google Scholar 

  • Costa DP, Leme F, Takata R, Costa DC, Silva W, Filho R, Alves GM, Luz RK (2016) Effects of temperature on growth, survival and physiological parameters in juveniles of Lophiosilurus alexandri, a carnivorous neotropical catfish. Aquac Res 47:1706–1715. https://doi.org/10.1111/are.12594

    Article  CAS  Google Scholar 

  • Costa DC, Mattioli CC, Silva WS, Takata R, Leme FOP, Oliveira AL, Luz RK (2017) The effect of environmental colour on the growth, metabolism, physiology and skin pigmentation of the carnivorous freshwater catfish Lophiosilurus alexandri. J Fish Bio 90:922–935. https://doi.org/10.1111/jfb.13208

    Article  CAS  Google Scholar 

  • Covès D, Beauchaud M, Attia J, Dutto G, Bouchut C, Bégout ML (2006) Long-term monitoring of individual fish triggering activity on a self-feeding system: an example using European sea bass (Dicentrarchus labrax). Aquaculture 253:385–392. https://doi.org/10.1016/j.aquaculture.2005.08.015

    Article  Google Scholar 

  • Cowey CB, Knox D, Walton MJ, Adron JW (1977) The regulation of gluconeogenesis by diet and insulin in rainbow trout (Salmo gairdneri). Br J Nutr 38:463–470. https://doi.org/10.1079/bjn19770111

    Article  CAS  PubMed  Google Scholar 

  • Curry S, Mandelkow H, Brick P, Franks N (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol 5:827–835. https://doi.org/10.1038/1869

    Article  CAS  PubMed  Google Scholar 

  • Emmans G (1981) 3.3 A model of the growth and feed intake of ad libitum fed animals, particularly poultry. BSAP Occasional Publication 5:103–110

    Article  Google Scholar 

  • Endo M, Kumahara C, Yoshida T, Tabata M (2002) Reduced stress and increased immune responses in Nile tilapia kept under self-feeding conditions. Fish Sci 68:253–257. https://doi.org/10.1046/j.1444-2906.2002.00419.x

    Article  CAS  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2009) Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol and Bio 35:519–539. https://doi.org/10.1007/s10695-008-9259-5

    Article  CAS  Google Scholar 

  • Erfanullah JAK, Jafri AK (1998) Effect of dietary carbohydrate-to-lipid ratio on growth and body composition of walking catfish (Clarias batrachus). Aquaculture 161(1):159–168

  • Figueiredo RACR, Souza RC, Bezerra KS, Campeche DFB, Campos RML, Souza AM, Melo JFB (2014) Relação proteína: Carboidrato no desempenho e metabolismo de juvenis de pacamã (Lophiosilurus alexandri). Arq Bras Med Vet Zootec 66:1567–1576. https://doi.org/10.1590/1678-6454

    Article  CAS  Google Scholar 

  • Fortes-Silva R, Sánchez-Vázquez FJ, Martínez FJ (2011) Effects of pretreating a plant-based diet with phytase on diet selection and nutrient utilization in European sea bass. Aquaculture 319:417–422. https://doi.org/10.1016/j.aquaculture.2011.07.023

    Article  CAS  Google Scholar 

  • Furuya WM, Pezzato LE, Barros MM, Pezzato AC, Furuya VRB, Miranda EC (2004) Use of ideal protein concept for precision formulation of amino acid levels in fish-meal-free diets for juvenile Nile tilapia (Oreochromis niloticus L.). Aquac Res 35:1110–1116. https://doi.org/10.1111/j.1365-2109.2004.01133.x

    Article  CAS  Google Scholar 

  • Hemre GI, Mommsen TP, Krogdahl Å (2002) Carbohydrates in fish nutrition: 464 Effects on growth, glucose metabolism and hepatic enzymes. Aquac Nut 8(175–465):194. https://doi.org/10.1046/j.1365-2095.2002.00200.x

    Article  Google Scholar 

  • Houlihan, D; Boujard, T; Jobling, M (2008) (Ed.). Food intake in fish. John Wiley & Sons.

  • Hoyle I, Oidtmann B, Ellis T, Turnbull J, North B, Nikolaidis J, Knowles TG (2007) A validated macroscopic key to assess fin damage in farmed rainbow trout (Oncorhynchus mykiss). Aquaculture 271:142–148

    Article  Google Scholar 

  • Ishii S, Iizuka K, Miller BC, Uyeda K (2004) Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc Natl Acad Sci USA 101:15597–15602. https://doi.org/10.1073/pnas.0405238101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang S, Wu X, Li W, Wu M, Luo Y, Lu S, Lin H (2015) Effects of dietary protein and lipid levels on growth, feed utilization, body and plasma biochemical compositions of hybrid grouper (Epinephelus lanceolatus♂× Epinephelus fuscoguttatus♀) juveniles. Aquaculture 446:148–155

    Article  CAS  Google Scholar 

  • Jin Y, Tian L, xia, Xie, S. wei, Guo, D. qian, Yang, H. jun, Liang, G. ying, & Liu, Y. jian. (2015) Interactions between dietary protein levels, growth performance, feed utilization, gene expression and metabolic products in juvenile grass carp (Ctenopharyngodon idella). Aquaculture 437:75–83. https://doi.org/10.1016/j.aquaculture.2014.11.031

    Article  CAS  Google Scholar 

  • Kim KW, Kim KD, Han HS, Moniruzzaman M, Yun H, Lee S, Bai SC (2017) Optimum dietary protein level and protein-to-energy ratio for growth of juvenile Parrot Fish, Oplegnathus fasciatus. Journal of the World Aquac Soc 48:467–477. https://doi.org/10.1111/jwas.12337

    Article  CAS  Google Scholar 

  • Kitagawa AT, Costa LS, Paulino RR, Luz RK, Rosa PV, Guerra-Santos B, Fortes-Silva R (2015) Feeding behavior and the effect of photoperiod on the performance and hematological parameters of the pacamã catfish (Lophiosilurus alexandri). Appl Anim Behav Sci 171:211–218. https://doi.org/10.1016/j.applanim.2015.08.025

    Article  Google Scholar 

  • Kragh-Hansen U (1990) Structure and ligand binding properties of human serum albumin. Dan Med Bull 37:57–84

    CAS  PubMed  Google Scholar 

  • Latremouille DN (2003) Fin erosion in aquaculture and natural environments. Rev Fish Sci 11(4):315–335

    Article  Google Scholar 

  • Lee SM, Cho SH, Kim KD (2000) Effects of dietary protein and energy levels on growth and body composition of juvenile flounder Paralichthys olivaceus. J World Aquac Soc 31:306–315. https://doi.org/10.1111/j.1749-7345.2000.tb00882.x

    Article  Google Scholar 

  • Lins LV, Machado AB, Costa CM, Herrmann G (1997) Roteiro metodológico para elaboração de listas de espécies ameaçadas de extinção (contendo a lista oficial da fauna ameaçada de extinção de Minas Gerais). Publicações Avulsas Da Fundação Biodiversitas 1:1–50

    Google Scholar 

  • Liu XY, Wang Y, Ji WX (2011) Growth, feed utilization and body composition of Asian catfish (Pangasius hypophthalmus) fed at different dietary protein and lipid levels. Aquac Nut 17(5):578–584

    Article  CAS  Google Scholar 

  • López-Olmeda JF, Noble C, Sánchez-Vázquez FJ (2012) Does feeding time affect fish welfare? Fish Physiol and Biochemistry 38:143–152. https://doi.org/10.1007/s10695-011-9523-y

    Article  CAS  Google Scholar 

  • Lovell T (1989) Nutrition and feeding of fish. Van Nostrand Reinhold, Vol, New York, p 260

    Book  Google Scholar 

  • Lu KL, Cai LS, Wang L, Song K, Zhang CX, Rahimnejad S (2020) Effects of dietary protein/energy ratio and water temperature on growth performance, digestive enzymes activity and non-specific immune response of spotted seabass (Lateolabrax maculatus). Aquac Nutri 26:2023–2031. https://doi.org/10.1111/anu.13143

    Article  CAS  Google Scholar 

  • Lucas B, Sotelo A (1980) Effect of different alkalies, temperature, and hydrolysis times on tryptophan determination of pure proteins and of foods. Anal Biochem 109:192–197. https://doi.org/10.1016/0003-2697(80)90028-7

    Article  CAS  PubMed  Google Scholar 

  • Lundstedt LM, Melo JFB, Moraes G (2004) Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei: Siluriformes) in response to diet composition. Comp Biochem Physiol - B Biochem Mol Bio 137:331–339. https://doi.org/10.1016/j.cbpc.2003.12.003

    Article  CAS  Google Scholar 

  • Luo Z, Liu YJ, Mai KS, Tian LX, Tan XY, Yang HJ, Liang GY, Liu DH (2006) Quantitative L-lysine requirement of juvenile grouper Epinephelus coioides. Aquac Nutri 12:165–172. https://doi.org/10.1111/j.1365-2095.2006.00392.x

    Article  CAS  Google Scholar 

  • Luz RK, Santos JCE, Pedreira MM, Teixeira EA (2011) Effect of water flow rate and feed training on “pacamã” (Siluriforme: Pseudopimelodidae) juvenile production. Arq Bras Med Vet Zootec 63:973–979. https://doi.org/10.1590/S0102-09352011000400024

    Article  Google Scholar 

  • MacLean A, Metcalfe NB, Mitchell D (2000) Alternative competitive strategies in juvenile Atlantic salmon (Salmo salar): evidence from fin damage. Aquaculture 184(3–4):291–302

    Article  Google Scholar 

  • Mattioli CC, Takata R, Leme FDOP, Costa DC, Melillo Filho R, Silva WDS, Luz RK (2017) The effects of acute and chronic exposure to water salinity on juveniles of the carnivorous freshwater catfish Lophiosilurus alexandri. Aquaculture 481:255–266

    Article  CAS  Google Scholar 

  • Mccarthy ID, Carter CG, Houlihan DF (1992) The effect of feeding hierarchy on individual variability in daily feeding of rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Biol 41:257–263. https://doi.org/10.1111/j.1095-8649.1992.tb02655.x

    Article  Google Scholar 

  • Melillo Filho R, Takata R, Santos AEH, Silva W, Ikeda AL, Rodrigues LA, Santos JCE, Salaro AL, Luz RK (2014) Draining system and feeding rate during the initial development of Lophiosilurus alexandri (Steindachner, 1877), a carnivorous freshwater fish. Aquac Res 45:1913–1920. https://doi.org/10.1111/are.12139

    Article  Google Scholar 

  • Melo BJF, Lundstedt LM, Metón I, Baanante IV, Moraes G (2006) Effects of dietary levels of protein on nitrogenous metabolism of Rhamdia quelen (Teleostei: Pimelodidae). Comp. Biochem Physiol - A Mol Integr Physiol 145:181–187. https://doi.org/10.1016/j.cbpa.2006.06.007

    Article  CAS  Google Scholar 

  • Melo KDM, Oliveira GR, Brito TS, Soares DRP, Tessitore AJA, Alvarenga ER, Turra EM, Silva FCO, Teixeira EA (2016) Digestibilidade de ingredientes em dietas para juvenis de pacamã (Lophiosilurus alexandri). Pesq Agro Bras 51:785–788. https://doi.org/10.1590/S0100-204X2016000600012

    Article  Google Scholar 

  • Meyer G, Fracalossi DM (2004) Protein requirement of jundia fingerlings, Rhamdia quelen, at two dietary energy concentrations. Aquaculture 240:331–343. https://doi.org/10.1016/j.aquaculture.2004.01.034

    Article  CAS  Google Scholar 

  • Mohanta KN, Mohanty SN, Jena J, Sahu NP, Patro B (2009) Carbohydrate level in the diet of silver barb, Puntius gonionotus (Bleeker) fingerlings: effect on growth, nutrient utilization and whole body composition. Aquac Res 40(8):927–937

    Article  CAS  Google Scholar 

  • Moon TW (2001) Glucose intolerance in teleost fish: fact or fiction? Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology 129:243–249. https://doi.org/10.1016/S1096-4959(01)00316-5

    Article  CAS  PubMed  Google Scholar 

  • Mora Sanchez JA, Moyetones F, Jover Cerda M (2009) Influencia del contenido proteico en el crecimiento de alevines de bagre yaque, Leiarius marmoratus, alimentados con concentrados comerciales. Zootecnia Trop 27:187–194

    Google Scholar 

  • Nelson DL, Cox MM (2002) Lehninger princípios de bioquímica, 3rd edn. Sarvier Editora de Livros Médicos LTDA, São Paulo

    Google Scholar 

  • Noble C, Mizusawa K, Suzuki K, Tabata M (2007) The effect of differing self-feeding regimes on the growth, behaviour and fin damage of rainbow trout held in groups. Aquaculture 264:214–222. https://doi.org/10.1016/j.aquaculture.2006.12.028

    Article  Google Scholar 

  • NRC National Research Council (1993). Nutrient requirements of fish. The National Academy Press, Washington, D.C., USA, (114 pp.).

  • NRC National Research Council (2011). Nutrient requirements of fish and shrimp. Animal Nutrition SeriesNational Research Council of the National Academies. The National Academies Press, Washington, D.C., USA (376).

  • Oliveira MM, Ribeiro T, Orlando TM, Oliveira DGS, Drumond MM, Freitas RTF, Rosa PV (2014) Effects crude protein levels on female Nile tilapia (Oreochromis niloticus) reproductive performance parameters. Anim Reprod Sci 150:62–69. https://doi.org/10.1016/j.anireprosci.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  • Oliveira CG, Espirito Santo AH, Guilherme HO, Santos FAC, Silva LFS, Santos WM, Malta ACA, Luz RK, Costa LS, Ribeiro PAP (2020) Effect of corn in diets for carnivorous catfish (Lophiosilurus alexandri) on metabolic and performance parameters. Aquac Res 51:4507–4516. https://doi.org/10.1111/are.14795

    Article  CAS  Google Scholar 

  • Papaparaskeva-Papoutsoglou E, Alexis MN (1986) Protein requirements of young grey mullet, Mugil capito. Aquaculture 52:105–115. https://doi.org/10.1016/0044-8486(86)90030-X

    Article  CAS  Google Scholar 

  • Peres H, Oliva-Teles A (2009) The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture 296:81–86. https://doi.org/10.1016/j.aquaculture.2009.04.046

    Article  CAS  Google Scholar 

  • Prabu DL, Ebeneezar S, Chandrasekar S, Tejpal CS, Kavitha M, Sayooj P, Vijayagopal P (2020) Influence of graded level of dietary protein with equated level of limiting amino acids on growth, feed utilization, body indices and nutritive profile of snubnose pompano, Trachinotus blochii (Lacepede, 1801) reared in low saline water. Anim Feed Sci and Tech 269:114685. https://doi.org/10.1016/j.anifeedsci.2020.114685

    Article  CAS  Google Scholar 

  • Ribeiro PAP, de Melo Hoyos DC, de Oliveira CG, Flora MALD, Luz RK (2019) Eugenol and benzocaine as anesthetics for Lophiosilurus alexandri juvenile, a freshwater carnivorous catfish. Aquac Intern 27(1):313–321

    Article  CAS  Google Scholar 

  • Ross LG, Ross B (2008) Anaesthetic and sedative techniques for aquatic animals, 3rd edn. Blackwell Science, Oxford, p 236p

    Book  Google Scholar 

  • Sagada G, Chen J, Shen B, Huang A, Sun L, Jiang J, Jin C (2017) Optimizing protein and lipid levels in practical diet for juvenile northern snakehead fish (Channa argus). Anim Nutri 3:156–163. https://doi.org/10.1016/j.aninu.2017.03.003

    Article  Google Scholar 

  • Salaro AL, Junior JCO, Lima FW, Ferraz RB, Pontes MD, Campelo DAV, Zuanon JAS, Luz RK (2015) Gelatin in replacement of bovine heart in feed training of Lophiosilurus alexandri in different water salinities. Anais Da Academia Brasileira De Ciencias 87:2281–2287. https://doi.org/10.1590/0001-3765201520140575

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Vázquez FJ, Yamamoto T, Akiyama T, Madrid JA, Tabata M (1999) Macronutrient self-selection through demand-feeders in rainbow trout. Physiol Behavior 66:45–51. https://doi.org/10.1016/S0031-9384(98)00313-8

    Article  Google Scholar 

  • Santos FAC, Fortes-Silva R, Costa LS, Luz RK, Guilherme HO, Gamarano PG, Oliveira CG, Santos WM, Ribeiro PAP (2019) Regulation of voluntary protein/energy intake based practical diet composition for the carnivorous neotropical catfish Lophiosilurus alexandri. Aquaculture 510:198–205. https://doi.org/10.1016/j.aquaculture.2019.05.038

    Article  Google Scholar 

  • Seong M, Lee S, Lee S, Song Y, Bae J, Chang K, Bai SC (2018) The effects of different levels of dietary fermented plant-based protein concentrate on growth, hematology and non-specific immune responses in juvenile olive flounder, Paralichthys olivaceus. Aquaculture 483:196–202. https://doi.org/10.1016/j.aquaculture.2017.10.023

    Article  CAS  Google Scholar 

  • Shiau SY, Lan CW (1996) Optimum dietary protein level and protein to energy ratio for growth of grouper (Epinephelus malabaricus). Aquaculture 145:259–266. https://doi.org/10.1016/S0044-8486(96)01324-5

    Article  CAS  Google Scholar 

  • Signor AA, Boscolo WR, Feiden A, Bittencourt F, Coldebella A, Reidel A (2010) Proteína e energia na alimentação de pacus criados em tanques-rede. Rev Bras Zootec 39:2336–2341

    Article  Google Scholar 

  • Silva WS, Cordeiro NIS, Costa DC, Takata R, Luz RK (2014) Frequência alimentar e taxa de arraçoamento durante o condicionamento alimentar de juvenis de pacamã. Pesq Agro Bras 49:648–651. https://doi.org/10.1590/S0100-204X2014000800009

    Article  Google Scholar 

  • Silva WS, Hisano H, Mattioli CC, Torres IFA, Paes-Leme FO, Luz RK (2019) Effects of cyclical short-term fasting and refeeding on juvenile Lophiosilurus alexandri, a carnivorous Neotropical catfish. Aquaculture 505:12–17. https://doi.org/10.1016/j.aquaculture.2019.02.047

    Article  CAS  Google Scholar 

  • Simpson SJ, Raubenheimer D (2001) A framework for the study of macronutrient intake in fish. Aquac Res 32(6):421–432

    Article  CAS  Google Scholar 

  • Sousa JA, Bazilio DB, da Costa RA, Brabo MF, Campelo DA, Nunes ZM, Veras GC (2021) Protein requirement in the diet of Heros severus (Heckel, 1840): An Amazonian ornamental fish. J World Aquac Soc 52(2):482–495

    Article  Google Scholar 

  • Souza MG, Seabra AGL, Silva LCR, Santos LD, Balen RE, Meurer F (2013) Exigência de proteína bruta para juvenis de pacamã. Rev Bras Saude e Prod Anim 14:362–370. https://doi.org/10.1590/S1519-99402013000200011

    Article  Google Scholar 

  • Sparling DW, Vann S, Grove RA (1998) Blood changes in mallards exposed to white phosphorus. Environ Toxicol Chem 17:2521–2529. https://doi.org/10.1002/etc.5620171221

    Article  CAS  Google Scholar 

  • Stejskal V, Matoušek J, Prokešová M, Podhorec P, Křišťan J, Policar T, Gebauer T (2020) Fin damage and growth parameters relative to stocking density and feeding method in intensively cultured European perch (Perca fluviatilis L.). J Fish Dis 43:253–262. https://doi.org/10.1111/jfd.13118

    Article  PubMed  Google Scholar 

  • Stewart LAE, Kadri S, Noble C, Kankainen M, Setälä J, Huntingford FA (2012) The bio-economic impact of improving fish welfare using demand feeders in Scottish Atlantic Salmon Smolt Production. Aquac Econ Manag 16:384–398. https://doi.org/10.1080/13657305.2012.729253

    Article  Google Scholar 

  • Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng 12:439–446. https://doi.org/10.1093/protein/12.6.439

    Article  CAS  PubMed  Google Scholar 

  • Talbot C (1993) Some aspects of the biology of feeding and growth in fish. Proceedings of the Nutrition Society 52:403–416

    Article  CAS  PubMed  Google Scholar 

  • Tenório RA, Jorge A, Santos G, Patrocínio J, Maria E, Nogueira DS (2006). Crescimento do niquim (Lophiosilurus alexandri Steindachner 1876 ), em diferentes condições de luminosidade e tipos de alimento. 305–309.

  • Thorpe JE, Cho CY (1995) Minimising waste through bioenergetically and behaviourally based feeding strategies. Water Sci and Tech 31:29–40. https://doi.org/10.1016/0273-1223(95)00424-L

    Article  CAS  Google Scholar 

  • Thrall MA (2004) Veterinary hematology and clinical chemistry, 1st edn. Lippincott Williams & Wilkins, Philadelphia, pp 486–490

    Google Scholar 

  • Turnbull JF, Adams CE, Richards RH, Robertson DA (1998). Attack site and resultant damage during aggressive encounters in Atlantic salmon (Salmo salar L.) parr. Aquaculture, 159(3–4), 345–353.

  • Twibell RG, Barron JM, Gannam AL (2016) Evaluation of dietary lipid sources for the juvenile lost river sucker. N Am J Aquac 78:234–242. https://doi.org/10.1080/15222055.2016.1167799

    Article  Google Scholar 

  • Van Der Boon J, Van Den Thillart GEEJM, Addink ADF (1991) The effects of cortisol administration on intermediary metabolism in teleost fish. Comparative Biochemistry and Physiology. Part A Physiology 100:47–53. https://doi.org/10.1016/0300-9629(91)90182-C

    Article  Google Scholar 

  • Wang F, Han H, Wang Y, Ma X (2013) Growth, feed utilization and body composition of juvenile golden pompano Trachinotus ovatus fed at different dietary protein and lipid levels. Aquac Nut 19(3):360–367

    Article  CAS  Google Scholar 

  • Wang Q, He G, Mai K (2016) Modulation of lipid metabolism, immune parameters, and hepatic transferrin expression in juvenile turbot (Scophthalmus maximus L.) by increasing dietary linseed oil levels. Aquaculture 464:489–496. https://doi.org/10.1016/j.aquaculture.2016.07.030

    Article  CAS  Google Scholar 

  • Wang P, Zhu J, Feng J, He J, Lou Y, Zhou Q (2017) Effects of dietary soy protein concentrate meal on growth, immunity, enzyme activity and protein metabolism in relation to gene expression in large yellow croaker Larimichthys crocea. Aquaculture 477:15–22. https://doi.org/10.1016/j.aquaculture.2017.04.030

    Article  CAS  Google Scholar 

  • White JA, Fry JC, Hart RJ (1986) An evaluation of the waters pico tag system for the amino acid analysis of food materials. J Autom Chem 8:170–177

    Article  CAS  Google Scholar 

  • Yamamoto T, Shima T, Unuma T, Shiraishi M, Akiyama T, Tabata M (2000) Voluntary intake of diets with varying digestible energy contents and energy sources, by juvenile rainbow trout Oncorhynchus mykiss, using self-feeders. Fish Sci 66:528–534. https://doi.org/10.1046/j.1444-2906.2000.00083.x

    Article  CAS  Google Scholar 

  • Yang SD, Lin TS, Liou CH, Peng HK (2003) Influence of dietary protein levels on growth performance, carcass composition and liver lipid classes of juvenile Spinibarbus hollandi (Oshima). Aquac Res 34:661–666. https://doi.org/10.1046/j.1365-2109.2003.00880.x

  • Ye H, Zhou Y, Su N, Wang A, Tan X, Sun Z, Zou C, Liu Q, Ye C (2019) Effects of replacing fish meal with rendered animal protein blend on growth performance, hepatic steatosis and immune status in hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Aquaculture 511:734203. https://doi.org/10.1016/j.aquaculture.2019.734203

    Article  CAS  Google Scholar 

  • Yun B, Mai K, Zhang W, Xu W (2011) Effects of dietary cholesterol on growth performance, feed intake and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed high plant protein diets. Aquaculture 319:105–110. https://doi.org/10.1016/j.aquaculture.2011.06.028

    Article  CAS  Google Scholar 

  • Zhang J, Zhou F, L-lei W, Shao Q, Xu Z, Xu J (2010) Dietary protein requirement of juvenile black sea bream, Sparus macrocephalus. Journal of the World Aquac Soc 41:151–164. https://doi.org/10.1111/j.1749-7345.2010.00356.x

    Article  CAS  Google Scholar 

  • Zhang Y, Sun Z, Wang A, Ye C, Zhu X (2017) Effects of dietary protein and lipid levels on growth, body and plasma biochemical composition and selective gene expression in liver of hybrid snakehead (Channa maculata ♀ × Channa argus ♂) fingerlings. Aquaculture 468:1–9. https://doi.org/10.1016/j.aquaculture.2016.09.052

    Article  CAS  Google Scholar 

Download references

Funding

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq-Brazil, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES Brazil, and the Fundação de Amparo a Pesquisa de Minas Gerais-FAPEMIG-Brazil for their financial support to and funding of the authors, including Ronald K. Luz and Paula A. P. Ribeiro (CNPq –Proc. 308547/2018–7 and 308684/2017–6, respectively).

Author information

Authors and Affiliations

Authors

Contributions

Fabio Aremil Costa dos Santos—(fabioaremil@gmail.com) conceptualization, methodology, validation, formal analysis, investigation, writing—original draft, writing—reviewing and editing, visualization. Leandro Santos Costa (leandro.s.costa@ufv.br) conceptualization, methodology, validation, formal analysis, investigation. Helder de Oliveira Guilherme—(helderog@gmail.com) conceptualization, methodology, validation, formal analysis, investigation. Pedro Gomes Gamarano—(pedrogomes130@hotmail.com) conceptualization, methodology, validation, formal analysis, investigation. Jose Fernando López-Olmeda—(jflopez@um.es) conceptualization, methodology, validation, formal analysis, investigation. Verônica Guimarães Landa Prado—(veronica.glp97@gmail.com) conceptualization, methodology, validation, formal analysis, investigation. Débora de Almeida Freitas (deboralmeidaf@gmail.com) conceptualization, methodology, validation, formal analysis, investigation. Luiz Felipe da Silveira Silva (luizssilva2209@gmail.com) conceptualization, methodology, validation, formal analysis, investigation. Ronald Kennedy Luz—(luzrk@yahoo.com) conceptualization, methodology, validation, formal analysis, investigation. funding acquisition. Paula Adriane Perez Ribeiro—(paulaperezribeiro@hotmail.com) conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, Investigation, Writing—original draft, writing—reviewing and editing, visualization, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Fabio Aremil Costa dos Santos.

Ethics declarations

Ethics approval

The authors followed all applicable international, national, and/or institutional guidelines for animal welfare. The procedures of this work abide by the protocols approved by the Animal Use Ethics Committee (Comissão de Ética no Uso de Animais CEUA-UMG) (nº 208/2018).

Consent to participle

All names in the author list have been involved in various stages of experimentation or writing.

Consent for publication

All names on the list of authors agree with this study's publication.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Gavin Burnell.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, F.A.C., Costa, L.S., Guilherme, H.d. et al. Growth and blood chemistry of juvenile Neotropical catfish (Lophiosilurus alexandri) self-feeding on diets that differ in protein-to-energy (P:E) ratio. Aquacult Int 31, 1011–1029 (2023). https://doi.org/10.1007/s10499-022-01013-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-022-01013-3

Keywords

Navigation