Skip to main content

Advertisement

Log in

Bioeconomic modelling in aquaculture: an overview of the literature

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Bioeconomic models consist of the use of mathematics to model the behaviour of biological systems conditioned by biological, environmental, economic and technical factors. At present, market competitiveness in aquaculture is growing steadily and the amount of data that producers have to manage is increasing. In this context, bioeconomic models are a crucial tool for improving the efficiency of decision-making processes. This paper reviews the literature on bioeconomic modelling in aquaculture from 2004 to 2015. In order to find the papers reviewed in the present study, an exhaustive online search was conducted in various databases that contain papers published in the most relevant journals in this area of research. After identifying the application of these models to aquaculture throughout the last decade, an analysis was developed for the papers published in the three main research areas: aquaculture management, economic viability and risk management. The last section presents a discussion about the types of relationships modelled, the data used, the estimation techniques, and the limitations and challenges within this discipline that would improve knowledge about aquaculture management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen P, Botsford L, Schuur A, Johnston W (1984) Bioeconomics of aquaculture, developments in aquaculture and fisheries science. Elsevier, New York

    Google Scholar 

  • Araneda ME, Hernández JM, Gasca-Leyva E (2011) Optimal harvesting time of farmed aquatic populations with nonlinear size-heterogeneous growth. Nat Resour Model 24:477–513

    Article  Google Scholar 

  • Arnason R (1992) Optimal feeding schedules and harvesting time in aquaculture. Mar Resour Econ 7:15–35

    Article  Google Scholar 

  • Bjørndal T (1988) Optimal harvesting of farmed fish. Mar Resour Econ 5:139–159

    Article  Google Scholar 

  • Bosch D, Kuminoff N, Stephenson K, Miller A, Pope J, Harris A (2010) Evaluation of policy options for expanding oyster aquaculture in Virginia. Aquac Econ Manag 14:145–163

    Article  Google Scholar 

  • Bravo F, Durán G, Lucena A, Marenco J, Morán D, Weintraub A (2013) Mathematical models for optimizing production chain planning in salmon farming. Int Trans Oper Res 20:731–766

    Article  Google Scholar 

  • Bunting SW, Bosma RH, Van Zwieten PAM, Sidik AS (2013) Bioeconomic modeling of shrimp aquaculture strategies for the Mahakam delta, Indonesia. Aquac Econ Manag 17:51–70

    Article  Google Scholar 

  • Choi JD, Larkin SL, Spreen TH (2006) A bioeconomic model for cham scallop (Patinopecten yessoensis) aquaculture in Korea. Aquac Econ Manag 10:125–146

    Article  Google Scholar 

  • Clark JL, Weldon RN, Adams CM, Wirth FF (2010) Risk assessment of a shrimp aquaculture investment in Florida. Aquac Econ Manag 14:332–357

    Article  Google Scholar 

  • Cuenco ML (1989) Aquaculture systems modeling: an introduction with emphasis on warmwater aquaculture. International Center for Living Aquatic Resources Management, Manila

    Google Scholar 

  • Dominguez-May R, Hernández JM, Gasca-Leyva E, Poot-López GR (2011) Effect of ration and size heterogeneity on harvest time: Tilapia culture in Yucatan, Mexico. Aquac Econ Manag 15:278–301

    Article  Google Scholar 

  • Ferreira JG, Sequeira A, Hawkins AJS, Newton A, Nickell TD, Pastres R et al (2009) Analysis of coastal and offshore aquaculture: application of the FARM model to multiple systems and shellfish species. Aquaculture 289:32–41

    Article  Google Scholar 

  • Gasca-Leyva E, Hernández JM, Veliov VM (2008) Optimal harvesting time in a size-heterogeneous population. Ecol Model 210:161–168

    Article  Google Scholar 

  • Gonzalez-Romero MA, Hernandez-Llamas A, Ruiz-Velazco JMJ, Plascencia-Cuevas TN, Nieto-Navarro JT (2014) Stochastic bio-economic optimization of pond size for intensive commercial production of whiteleg shrimp Litopenaeus vannamei. Aquaculture 433:496–503

    Article  Google Scholar 

  • Hean RL (1994) An optimal management model for intensive aquaculture—an application in Atlantic salmon. Aust J Agric Econ 38:31–47

    Article  Google Scholar 

  • Heaps T (1993) The optimal feeding of a farmed fish. Mar Resour Econ 8:89–99

    Article  Google Scholar 

  • Heaps T (1995) Density dependent growth and the culling of farmed fish. Mar Resour Econ 10:285–298

    Article  Google Scholar 

  • Hermanse Ø, Eide A (2013) Bioeconomics of capture-based aquaculture of cod (Gadus Morhua). Aquac Econ Manag 17:31–50

    Article  Google Scholar 

  • Hernández JM, León-Santana M, León CJ (2007) The role of the water temperature in the optimal management of marine aquaculture. Eur J Oper Res 181:872–886

    Article  Google Scholar 

  • Hernandez-Llamas A (2015) Stochastic assessment of economic losses associated with hurricane hazard for whiteleg shrimp Litopenaeus vannamei cultivated in floating cages in northwestern Mexico. Aquac Res. doi:10.1111/are.12779

  • Hernández-Llamas A, Zarain-Herzberg M (2011) Bioeconomic modeling and risk analysis of raising shrimp Litopenaeus vannamei in floating cages in northwestern Mexico: assessment of hurricane hazard, stochastic variability of shrimp and feed prices, and zootechnical parameters. Aquaculture 314:261–268

    Article  Google Scholar 

  • Hernández-Llamas A, Ruiz-Velazco JMJ, Gomez-Muñoz VM (2013) Economic risk associated with white spot disease and stochastic variability in economic, zootechnical and water quality parameters for intensive production of Litopenaeus vannamei. Rev Aquac 5:121–131

    Article  Google Scholar 

  • Karp L, Sadeh A, Griffin WL (1986) Cycles in agricultural production: the case of aquaculture. Am J Agric Econ 68:553–561

    Article  Google Scholar 

  • Keys SJ, Crocos PJ, Cacho OJ (2004) Commercial grow-out performance and cost-benefit analysis for farm production of the brown tiger shrimp (Penaeus esculentus). Aquac Econ Manag 8:295–308

    Article  Google Scholar 

  • Konstantinou ZI, Krestenitis YN, Latinopoulos D, Pagou K, Galinou-Mitsoudi S, Savvidis Y (2012) Aspects of mussel-farming activity in Chalastra, Thermaikos Gulf, Greece: an effort to untie a management Gordian Knot. Ecol Soc 17:16–28

    Google Scholar 

  • León CJ, Hernández JM, León-Santana M (2006) The effects of water temperature in aquaculture management. Appl Econ 38:2159–2168

    Article  Google Scholar 

  • León-Santana M, Hernández JM (2008) Optimum management and environmental protection in the aquaculture industry. Ecol Econ 64:849–857

    Article  Google Scholar 

  • Leung PS (1994) Bioeconomic modeling in aquaculture after two decades. In: Shang YC, Leung PS, Lee CS, Su MS, Liao IC (eds) Socioeconomics of aquaculture, TungKang Marine Laboratory, Taiwan. Conference proceedings, vol 4, pp 115–137

  • Leung P, Shang YC (1989) Modeling prawn production management system: a dynamic Markov decision approach. Agric Syst 29:5–20

    Article  Google Scholar 

  • Liu Y, Sumaila UR, Volpe JP (2011) Potential ecological and economic impacts of sea lice from farmed salmon on wild salmon fisheries. Ecol Econ 70:1746–1755

    Article  Google Scholar 

  • Liu Y, Diserud OH, Hindar K, Skonhoft A (2013) An ecological-economic model on the effects of interactions between escaped farmed and wild salmon (Salmo salar). Fish Fish 14:158–173

    Article  Google Scholar 

  • Llorente I, Luna L (2013) The competitive advantages arising from different environmental conditions in seabream, Sparus aurata, production in the Mediterranean sea. J World Aquac Soc 44:611–627

    Article  Google Scholar 

  • Llorente I, Luna L (2014) Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm. Aquac Int 22:1837–1849

    Article  Google Scholar 

  • Martinez-Cordero FJ, Leung PS (2004) Multicriteria decision making (MCDM) model for regional sustainable shrimp farming development in northwest Mexico. Aquac Econ Manag 8:179–191

    Article  Google Scholar 

  • Melia P, Gatto M (2005) A stochastic bioeconomic model for the management of clam farming. Ecol Model 184:163–174

    Article  Google Scholar 

  • Mendo T, Koch V, Wolff M, Sinsel F, Ruiz-Verdugo C (2011) Feasibility of intertidal bottom culture of the penshell Atrina maura in Bahia Magdalena, Baja California Sur, Mexico. Aquaculture 314:252–260

    Article  Google Scholar 

  • Mistiaen JA, Strand I (1999) Optimal feeding and harvest time for fish weight-dependent prices. Mar Resour Econ 13:231–246

    Article  Google Scholar 

  • Pathumnakul S, Khamjan S, Piewthongngam K (2007) Procurement decisions regarding shrimp supplies for Thai shrimp processors. Aquac Eng 37:215–221

    Article  Google Scholar 

  • Pathumnakul S, Piewthongngam K, Khamjan S (2009) Integrating a shrimp-growth function, farming skills information, and a supply allocation algorithm to manage the shrimp supply chain. Comput Electron Agric 66:93–105

    Article  Google Scholar 

  • Pérez EP, Araya A, Araneda M, Zuñiga C (2012) Bioeconomic effect from the size selection in red abalone intensive culture Haliotis rufescens as a production strategy. Aquac Int 20:333–345

    Article  Google Scholar 

  • Petersen EH, Phuong TH (2010) Tropical spiny lobster (Panulirus ornatus) farming in Vietnam—bioeconomics and perceived constraints to development. Aquac Res 41:634–642

    Google Scholar 

  • Petersen EH, Phuong TH (2011) Bioeconomic analysis of improved diets for lobster, Panulirus ornatus, culture in Vietnam. J World Aquac Soc 42:1–11

    Article  Google Scholar 

  • Petersen EH, Schilizzi S (2010) The impact of price and yield risk on the bioeconomics of reservoir aquaculture in Northern Vietnam. Aquac Econ Manag 14:185–201

    Article  Google Scholar 

  • Petersen EH, Lever C, Schilizzi S, Hertzler G (2007) Bioeconomics of reservoir aquaculture in Vietnam. Aquac Econ Manag 11:267–284

    Article  Google Scholar 

  • Petersen EH, Suc NX, Thanh DV, Hien TT (2011) Bioeconomic analysis of extensive mud crab farming in Vietnam and analysis of improved diets. Aquac Econ Manag 15:83–102

    Article  Google Scholar 

  • Petersen EH, Phuong TH, Van Dung N, Giang PT, Dat NK, Tuan VA et al (2013) Bioeconomics of mud crab, Scylla paramamosain, culture in Vietnam. Rev Aquac 5:1–9

    Article  Google Scholar 

  • Petersen EH, Luan TD, Chinh DTM, Tuan VA, Binh TQ, Van Truc L, Glencross BD (2014) Bioeconomics of cobia, Rachycentron canadum, culture in Vietnam. Aquac Econ Manag 18:28–44

    Article  Google Scholar 

  • Pomeroy R, Bravo-Ureta BE, Solís D, Johnston RJ (2008) Bioeconomic modelling and salmon aquaculture: an overview of the literature. Int J Environ Pollut 33:485–500

    Article  CAS  Google Scholar 

  • Ponce-Marbán D, Hernández JM, Gasca-Leyva E (2006) Simulating the economic viability of Nile tilapia and Australian redclaw crayfish polyculture in Yucatan, Mexico. Aquaculture 261:151–159

    Article  Google Scholar 

  • Ponzoni R, Hong Nguyen N, Ling Khaw H (2007) Investment appraisal of genetic improvement programs in Nile tilapia. Aquaculture 269:187–199

    Article  Google Scholar 

  • Ponzoni H, Hong Nguyen N, Ling Khaw H, Huu Ninh N (2008) Accounting for genotype by environment interaction in economic appraisal of genetic improvement programs in common carp Cyprinus carpio. Aquaculture 285:47–55

    Article  Google Scholar 

  • Poot-López GR, Gasca-Leyva E (2009) Substitution of balanced feed with chaya, Cnidoscolus chayamansa, leaf in tilapia culture: a bioeconomic evaluation. J World Aquac Soc 40:351–362

    Article  Google Scholar 

  • Poot-López GR, Hernández JM, Gasca-Leyva E (2010) Input management in integrated agriculture–aquaculture systems in Yucatan: tree spinach leaves as a dietary supplement in tilapia culture. Agric Syst 103:98–104

    Article  Google Scholar 

  • Poot-López GR, Hernández JM, Gasca-Leyva E (2014) Analysis of ration size in Nile tilapia production: economics and environmental implications. Aquaculture 420–421:198–205

    Article  Google Scholar 

  • Rabassó M, Hernández JM (2015) Bioeconomic analysis of the environmental impact of a marine fish farm. J Environ Manag 158:24–35

    Article  Google Scholar 

  • Robinson N, Schipp G, Bosmans J, Jerry DR (2010a) Modelling selective breeding in protandrous, batch-reared Asian sea bass (Lates calcarifer, Bloch) using walkback selection. Aquac Res 41:e643–e655

    Article  Google Scholar 

  • Robinson N, Li X, Hayes B (2010b) Testing options for the commercialization of abalone selective breeding using bioeconomic simulation modelling. Aquac Res 41:e268–e288

    Article  Google Scholar 

  • Sanchez-Zazueta E, Martinez-Cordero FJ, Hernández JM (2013a) Credit management analysis of semi-intensive shrimp farming in Mexico. Aquac Econ Manage 17:360–379

    Article  Google Scholar 

  • Sanchez-Zazueta E, Hernández JM, Martínez-Cordero FJ (2013b) Stocking density and date decisions in semi-intensive shrimp Litopenaeus vannamei (Boone, 1931) farming: a bioeconomic approach. Aquac Res 44:574–587

    Article  Google Scholar 

  • Seginer I (2009) Are restricted periods of over-stocking of recirculating aquaculture systems advisable? A simulation study. Aquac Eng 41:194–206

    Article  Google Scholar 

  • Seginer I, Ben-Asher R (2011) Optimal harvest size in aquaculture, with RAS cultured sea bream (Sparus aurata) as an example. Aquac Eng 44:55–64

    Article  Google Scholar 

  • Seginer I, Halachmi I (2008) Optimal stocking in intensive aquaculture under sinusoidal temperature, price and marketing conditions. Aquac Eng 39:103–112

    Article  Google Scholar 

  • Seginer I, Mozes N (2012) A note on oxygen supply in RAS: the effect of water temperature. Aquac Eng 50:46–54

    Article  Google Scholar 

  • Seijo JC (2004) Risk of exceeding bioeconomic limit reference points in shrimp aquaculture systems. Aquac Econ Manag 8:201–212

    Article  Google Scholar 

  • Shamshak GL (2011) Economic evaluation of capture-based bluefin tuna aquaculture on the US east coast. Mar Resour Econ 26:309–328

    Article  Google Scholar 

  • Shamshak GL, Anderson JL (2009) Dynamic stochastic adaptive bioeconomic model of offshore bluefin tuna aquaculture. Aquac Econ Manag 13:155–175

    Article  Google Scholar 

  • Toan TD, Schilizzi SGM (2010) Modeling the impact of government regulations on the performance of reservoir aquaculture in Vietnam. Aquac Econ Manag 14:120–144

    Article  Google Scholar 

  • Villanueva RR, Araneda ME, Vela M, Seijo JC (2013) Selecting stocking density in different climatic seasons: a decision theory approach to intensive aquaculture. Aquaculture 384–387:25–34

    Article  Google Scholar 

  • Yu R, Leung P (2005) Optimal harvesting strategies for a multi-cycle and multi-pond shrimp operation: a practical network model. Math Comput Simul 68:339–354

    Article  Google Scholar 

  • Yu R, Leung P (2006) Optimal partial harvesting schedule for aquaculture operations. Mar Resour Econ 21:301–315

    Article  Google Scholar 

  • Yu R, Leung P (2009) Optimal harvest time in continuous aquacultural production: the case of nonhomogeneous production cycles. Int J Prod Econ 117:267–270

    Article  Google Scholar 

  • Yu R, Leung P, Bienfang P (2006) Optimal production schedule in commercial shrimp culture. Aquaculture 254:426–441

    Article  Google Scholar 

  • Yu R, Leung P, Bienfang P (2007) A decision support system for efficient scheduling of multi-pond and multi-cycle commercial shrimp culture. In: Leung P, Engle C (eds) Shrimp culture: economics, market, and trade. Blackwell Publishing, Ames, pp 315–328

  • Yu R, Leung P, Bienfang P (2009) Modeling partial harvesting in intensive shrimp culture: a network-flow approach. Eur J Oper Res 193:262–271

    Article  Google Scholar 

  • Yu R, Leung P, Kam LE, Bienfang P (2010) A decision support system for scheduling partial harvesting in aquaculture. In: Manos B et al. (eds) Decision support systems in agriculture, food and the environment: trends, applications and advances. Information Science Reference, New York, pp 406–419

  • Zuñiga S (2010) A dynamic simulation analysis of Japanese abalone (Haliotis discus hannai) production in Chile. Aquac Int 18:603–620

    Article  Google Scholar 

  • Zuniga-Jara S, Goycolea-Homann MA (2014) A bioeconomic model for red tilapia culture on the coast of Ecuador. Aquac Int 22:339–359

    Article  Google Scholar 

  • Zuniga-Jara S, Marín-Riffo MC (2014) A bioeconomic model of a genetic improvement program of abalone. Aquac Int 22:1533–1562

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible through funding from the University of Cantabria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Llorente.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llorente, I., Luna, L. Bioeconomic modelling in aquaculture: an overview of the literature. Aquacult Int 24, 931–948 (2016). https://doi.org/10.1007/s10499-015-9962-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-015-9962-z

Keywords

Navigation