Skip to main content
Log in

Recent advances in the high-density rotifer culture in Japan

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The success of rapidly growing aquaculture industry depends on the steady supply of fish seeds. Appropriate food for initial larval stages is critical for mass scale fish seed production. Live food found better over artificial food for fish larvae culture. Rotifers have been found to be the best live food for feeding fish larvae in early life stage. Attempts have been made to develop viable techniques for the production of rotifer through batch, continuous, and semi-continuous culture methods. In order to feed increased number of fish larvae, rotifer need to be cultured under high-density method. Various efforts have been made for increasing culture density of rotifer. In Japan, stable high-density culture of rotifer has been developed in commercial scale at a rate of 20,000–30,000 ind. ml−1. Later on, ultra-high-density rotifer culture (160,000 ind. ml−1) was found successful, which can fulfill the increased demand for rotifer as fish larval food. Furthermore, a scope of alternative use of rotifer can be explored. The development of the high-density rotifer culture method in Japan has been reviewed. The considerations of the associated nutritional requirements, microbial aspects, and prospects of high-density culture have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abu-Rezq TS, Al-Shimmari J, Dias P (1997) Live food production using batch culture and chemostat system in Kuwait. Hydrobiologia 358:173–178

    Article  Google Scholar 

  • Boehm EW, Gibson O, Lubzens E (2000) Characterization of satellite DNA sequences from commercially important marine rotifers Brachionus plicatilis and Brachionus rotundiformis. Mar Biotechnol 2:38–48

    CAS  PubMed  Google Scholar 

  • Davis DA, Arnold CR (1997) Tolerance of the rotifer Brachionus plicatilis to ozone and total oxidative residuals. Ozone Sci Eng 19:457–469

    Article  CAS  Google Scholar 

  • Dhert P, Rombaut G, Suantika G, Sorgeloos P (2001) Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200:129–146

    Article  Google Scholar 

  • ESAD (2010) World population prospects: the 2010 Revision. Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. http://esa.un.org/unpd/wpp/index.htm

  • FAO (2012) The state of world fisheries and aquaculture 2012. FAO Fisheries and Aquaculture Department Food and Agriculture Organization of the United Nations. Rome

  • Ferreira M, Seixas P, Coutinho P, Fábregas J, Otero A (2011) Effect of the nutritional status of semi-continuous microalgal cultures on the productivity and biochemical composition of Brachionus plicatilis. Mar Biotechnol 13:1074–1085

    Article  CAS  PubMed  Google Scholar 

  • Fjelheim AJ, Markidis P, Skjermo J, Vadstein O (1999) Rotifers (Brachionus plicatilis) as vector for probiotic to turbot larvae (Scophthalmus maximus). In towards predictable quality, aquaculture Europe, EAS Special publication No. 27:60–61

  • Fontaine CT, Revera DB (1980) The mass culture of the rotifer Brachionus plicatilis, for use as foodstuff in aquaculture. Proc World Maricul Soc 11:211–218

    Google Scholar 

  • FRA (2012) Japanese institute develops continuous S type rotifer culture system with no environmental stress. Japan’s Fisheries Research Agency. http://www.japanfs.org/en/pages/032188.html

  • Fu Y, Hada H, Yamashita T, Yoshida Y, Hino A (1997) Development of continuous culture system for stable mass production of the marine rotifer Brachionus. Hydrobiologia 358:145–151

    Article  Google Scholar 

  • Fukusho K (1989) Biology and mass production of the rotifer Brachionus plicatilis. Int J Aquacult Fish Technol 1:232–240

    Google Scholar 

  • Gatesoupe FJ (1987) Further advances in the nutritional and antibacterial treatments of rotifers as food for turbot larvae, Scophthalmus maximus L. Aquaculture Europe’87 international conference. INRAr IFREMER, Brest, France, pp 1–20

  • Gatesoupe FJ (1989) Further advances in the nutritional and antibacterial treatments of rotifers as food for turbot larvae, Scophthalmus maximus L. In: De Pauw N, Ackerfots H, Wilkins N (eds) Aquaculture—a biotechnology in progress. Eur Aquac Soc, Bredene, Belgium 2:721–730

  • Gatesoupe FJ (1999) The use of probiotics in aquaculture. Aquaculture 180:147–165

    Article  Google Scholar 

  • Gomez A, Carvalho GR (2000) Sex, parthenogenesis and genetic structure of rotifers: microsatellite analysis of contemporary and resting egg bank populations. Mol Ecol 9:203–214

    Article  CAS  PubMed  Google Scholar 

  • Gomez A, Clabby C, Carvalho GR (1998) Isolation and characterization of microsatellite loci in a cyclically parthenogenetic rotifer, Brachionus plicatilis. Mol Ecol 7:1613–1621

    Article  Google Scholar 

  • Grisez L, Reyniers J, Swings J, Verdonck L, Ollevier F (1997) Dominant intestinal microflora of sea bream and sea bass larvae, from two hatcheries, during larval development. Aquaculture 155:387–399

    Article  Google Scholar 

  • Hagiwara A, Hamada K, Hori S, Hirayama K (1994) Increased sexual reproduction in Brachionus plicatilis with the addition of bacteria and rotifer extracts. J Exp Mar Biol Ecol 181:1–8

    Article  Google Scholar 

  • Hamre K, Opstad I, Espe M, Solbakken J, Hemre GI, Pittman K (2002) Nutrient composition and metamorphosis success of Atlantic halibut (Hippoglossus hippoglossus, L.) larvae fed natural zooplankton or Artemia. Aquac Nutr 8:139–148

    Article  Google Scholar 

  • Hamre K, Srivastava A, Ronnestad I, Mangor-Jensen A, Stoss J (2008) Several micronutrients in the rotifer Brachionus sp. may not fulfil the nutritional requirements of marine fish larvae. Aquac Nutr 14:51–60

    Article  CAS  Google Scholar 

  • Hino A (1993) Present culture systems of the rotifer (Brachionus plicatilis) and the function of microorganisms. In: Lee CS, Su MS, Liao IC (eds) Finfish hatchery in Asia: proceedings of finfish hatchery in Asia’91. TLM Conference Proceedings 3:61–710 Tungkang Marine Laboratory, Taiwan Fisheries Research Institute, Tungkang, Pingung, Taiwan, p. 14

  • Hirata H (1964) Cultivation of live food organisms at the Yashima Station. Saibai-Gyogyo 2(4):4 (in Japanese)

    Google Scholar 

  • Hirata H (1979) Rotifer culture in Japan. In: Styczynska-Jurewicz E, Backiel T, Jaspers E, Persoone J (eds) Cultivation of fish fry and its live food. Eur Maric Soc, Spec. l, Publ. 4, Bredene, Belgium, 361–375

  • Hirata H (1980) Culture methods of the marine rotifer, Brachionus plicatilis. Min Rev Data File Fish Res Kagoshima Univ 1:27–46

    Google Scholar 

  • Hirata H, Mori Y (1967) Mass culture of the marine rotifer fed baker’s yeast. Saibai Gyogyo 5:36–40

    Google Scholar 

  • Hirayama K (1987) A consideration of why mass culture of the rotifer Brachionus plicatilis with baker’s yeast is unstable. Hydrobiologia 147:269–270

    Article  Google Scholar 

  • Hirayama K, Funamoto H (1983) Supplementary effect of several nutrients on nutritive deficiency of baker’s yeast of population growth of the rotifer Brachionus plicatilis. Bull Jpn Soc Sci Fish 49:505–510

    Article  CAS  Google Scholar 

  • Hossain MA, Furuichi M (2000) Essentiality of dietary calcium supplement in fingerling scorpion fish (Sebastiscus marmoratus). Aquaculture 189:155–163

    Article  CAS  Google Scholar 

  • Hossain MA, Yoshimatsu T (2014) Dietary calcium requirement in fishes. Aquac Nutr 20:1–12

    Article  CAS  Google Scholar 

  • Hossain MA, Rahman MS, Furuichi M (2007) Enrichment of rotifer Brachionus rotundiformes with calcium. Bangladesh J Fish Res 11:51–56

    Google Scholar 

  • Ijiri K (2004) Ten years after medaka fish mated and laid eggs in space and further preparation for the life-cycle experiment on ISS. Biol Sci Space 18(3):138–139

    PubMed  Google Scholar 

  • Kinne O (1977) Cultivation of animals. In: Kinne O (ed) Marine ecology. Wiley, Chichester, 3(2):968–1004

  • Kolkovski S, Tandler A (1995) Why microdiets are still inadequate as a viable alternative to live zooplankters for developing marine fish larvae. Spec Publ Eur Aquac Soc 24:265–266

    Google Scholar 

  • Kolkovski S, Tandler A, Kissil GW, Gertler A (1993) The effect of dietary exogenous enzymes on digestion, assimilation, growth and survival of gilthead seabream (Sparus aurata, Sparidae, Linnaeus) larvae. Fish Physiol Biochem 12:203–209

    Article  CAS  PubMed  Google Scholar 

  • Lauf M, Hofer R (1984) Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture 37:335–346

    Article  Google Scholar 

  • Lee WJ, Park YS, Park YT, Kim SJ, Kim KY (1997) Studies on the availability of marine bacteria and the environmental factors for the mass culture of the high quality of Rotifera and Artemia: 1. Change of fatty acid and amino acid composition during cultivation and rotifer, Brachionus plicatilis by marine bacteria Erythrobacter sp. S pi-I. J Korean Fish Soc 30:319–328

    CAS  Google Scholar 

  • Lubzens E (1987) Raising rotifers for use in aquaculture. Hydrobiologia 147:245–255

    Article  CAS  Google Scholar 

  • Lubzens E, Zmora O, Barr O (2001) Biotechnology and aquaculture of rotifers. Hydrobiologia 446(447):337–353

    Article  Google Scholar 

  • Maeda M, Nogami K, Kanematsu M, Hirayama K (1997) The concept of biological control method in aquaculture. Hydrobiologia 358:285–290

    Article  Google Scholar 

  • Markridis P, Bergh O, Fiellheim AJ, Skjermo J, Vadstein O (1999) Microbial control of live food cultures. In: Laird L, Reinertsen H (eds) Towards predictable quality. Aquaculture Europe 99. Eur Aquac Soc. Spec. Publ. No. 27, Oostende, Belgium, 155–157

  • Markridis O, Fjelheim AJ, Skjermo J, Vadstein O (2000) Control of bacterial flora of Brachionus plicatilis and Artemia franciscana by incubation in bacterial suspensions. Aquaculture 185:207–218

    Article  Google Scholar 

  • Morizane T (1991) A review of automation and mechanization used in the production of rotifer in Japan. Rotifer and microalgae culture systems. In: Proceeding of US–Asia workshop. The Oceanic Institute, Honolulu, Hawaii, pp. 79–88

  • Munilla-Moran R, Stark JR, Barbour A (1990) The role of exogenous enzymes in digestion in culture of turbot larvae (Scophthalmus maximus L.). Aquaculture 88:337–350

    Article  CAS  Google Scholar 

  • Munro PD, Henderson RJ, Barbour A, Birkbeck TH (1999) Partial decontamination of rotifers with ultraviolet radiation: the effect of changes in the bacterial load and flora of rotifers on mortalities in start-feeding larval turbot. Aquaculture 170:229–244

    Article  Google Scholar 

  • Nordgreen A, Penglase S, Hamre K (2013) Increasing the levels of the essential trace elements Se, Zn, Cu and Mn in rotifers (Brachionus plicatilis) used as live feed. Aquaculture 380–383:120–129

    Article  Google Scholar 

  • NRC (1993) Nutrient requirements of fish. National Research Council, Washington

    Google Scholar 

  • Øie G, Olsen Y (1997) Protein and lipid content of the rotifer Brachionus plicatilis during variable growth and feeding conditions. Hydrobiologia 358:251–258

    Article  Google Scholar 

  • Olsen Y, Reitan KI, Vadstein O (1993) Dependence of temperature on loss rates of rotifers, lipids, and w3 fatty acids in starved Brachionus plicatilis cultures. Hydrobiologia 255–256:13–20

    Article  Google Scholar 

  • Onal U, Celik I, Ergun S (2010) The performance of a small-scale, high-density, continuous system for culturing the rotifer Brachionus plicatilis. Turk J Vet Anim Sci 34:187–195

    CAS  Google Scholar 

  • Owen JM, Adron JW, Middleton C, Cowey CB (1975) Elongation and desaturation of dietary fatty acids in turbot (Scophthalmus maximus L.) and rainbow trout (Salmo gaidneri Rich). Lipids 10:528–531

    Article  CAS  PubMed  Google Scholar 

  • Perez-Benavente G, Gatesoupe FJ (1988) Bacteria associated with cultured rotifers and Artemia are detrimental to larval turbot, Scophthalmus maximus L. Aquac Eng 118:289–293

    Article  Google Scholar 

  • Rodriguez JL, Planas M, Otero JJ (1991) Microflora and antibacterial treatments of rotifers and Artemia. Larvi’91 fish and crustacean larviculture symposium. Eur Aquac Soc. Special Publication No. 15:403–405

  • Rombaut G, Dhert P, Vandenberghe J, Verschuere L, Sorgeloos P, Verstraete W (1999a) Selection of bacteria enhancing the growth rate of axenically hatched rotifers (Brachionus plicatilis). Aquaculture 176:195–207

    Article  Google Scholar 

  • Rombaut G, Vershuere L, Dhert P, Sorgeloos P., Verstraete W (1999b) Multi-component probiotic for live feed (Brachionus plicatilis) cultures. In: Laird L, Reinertsen H (eds) Towards predictable quality. Aquaculture Oostende, Belgium, pp 201–202

  • Sargent J, McEvoy L, Bell G (1997) Requirements, presentation and sources of unsaturated fatty acids in marine fish larval feeds. Aquaculture 155:117–127

    Article  CAS  Google Scholar 

  • Sargent J, McEvoy L, Estevez A, Bell G, Bell M, Henderson J, Tocher D (1999) Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179:217–229

    Article  CAS  Google Scholar 

  • Scott JM (1981) The vitamin B12 requirement of the marine rotifer Brachionus plicatilis. J Mar Biol Assoc UK 61:983–994

    Article  Google Scholar 

  • Skjermo J, Vadstein O (1999) Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture 177:333–343

    Article  CAS  Google Scholar 

  • Skjermo J, Salvesen I, Oie G, Olsen Y, Vadstein O (1997) Microbially matured water: a technique for selection of a non-opportunistic bacterial flora in water that may improve performance of marine larvae. Aquac Int 5:13–28

    Article  Google Scholar 

  • Suantika G, Dhert P, Nurhudah M, Sorgeloos P (2000) High-density production of the rotifer Brachionus plicatilis in a recirculation system: consideration of water quality, zootechnical and nutritional aspects. Aquac Eng 21:201–214

    Article  Google Scholar 

  • Suantika G, Dhert P, Rombaut G, Vandenberghe J, De Wolf T, Sorgeloos P (2001) The use of ozone in a high density recirculation system for rotifers. Aquaculture 201:35–49

    Article  CAS  Google Scholar 

  • Suantika G, Dhert P, Sweetman E, Brien E, Sorgeloos P (2003) Technical and economical feasibility of a rotifer recirculation system. Aquaculture 227:173–189

    Article  Google Scholar 

  • Takeuchi T, Endo M, Kobayashi R, Ariga K, Yoshizaki G, Sakamoto T, Kanki R (2000) The influence of low gravity on the swimming behavior of tilapia. CELSS J 13:27–32

    Google Scholar 

  • Tanasomwang V, Muroga K (1989) Effects of sodium nifurstyrenate and tetracycline on the bacterial flora of rotifers (Brachionus plicatilis). Fish Pathol 24:29–35

    Article  CAS  Google Scholar 

  • Theilacker GH, Dorsey K (1980) Larval fish diversity. A summary of laboratory and field research. Workshop on the effects of environmental variation on the survival of larval pelagic fishes. Intergovernmental Oceanic Commission Workshop Rep. 28:105–142

  • Theilacker GH, Kimball AS (1984) Comparative quality of rotifers and copepods as foods for larval fishes. Calif Coop Oceanic Fish Invest Rep 15:80–86

    Google Scholar 

  • Trotta P (1981) A simple and inexpensive system for continuous monoxenic mass culture of marine microalgae. Aquaculture 22:383–387

    Article  Google Scholar 

  • Vadstein O, Øie G, Olsen O (1993) Particle size dependent feeding by the rotifer Brachionus plicatilis. Hydrobiologia 255(256):261–267

    Article  Google Scholar 

  • Verdonck L, Grisez L, Sweetman E, Minkoff G, Sogeloos P, Ollevier O, Swings J (1997) Vibrio associated with routine production of Brachionus plicatilis. Aquaculture 149:203–214

    Article  Google Scholar 

  • Verschuere L, Dhont J, Sorgeloos P, Verstraete W (1997) Monitoring biolog patterns and rrK-strategists in the intensive culture of Artemia juveniles. J Appl Microbiol 83:603–612

    Article  Google Scholar 

  • Walford J, Lam TJ (1993) Development of digestive tract and proteolytic enzyme activity in seabass (Lates calcarifer) larvae and juveniles. Aquaculture 109:187–205

    Article  CAS  Google Scholar 

  • Watanabe T (1993) Importance of docosahexaenoic acid in marine larval fish. J World Aquac Soc 24:152–161

    Article  Google Scholar 

  • Watanabe T, Kitajima C, Fujita S (1983) Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34:115–143

    Article  CAS  Google Scholar 

  • Witt U, Koske PH, Kuhlmann D, Lenz J, Nellen W (1981) Production of Nannochloris spec. (Chlorophyceae)in large-scale outdoor tanks and its use as a food organism in marine aquaculture. Aquaculture 23:171–181

    Google Scholar 

  • Wullur S, Sakakura Y, Hagiwara A (2011) Application of the minute monogonont rotifer Proales similis de Beauchamp in larval rearing of seven-band grouper Epinephelus septemfasciatus. Aquaculture 315:355–360

    Article  Google Scholar 

  • Wullur S, Yoshimatsu T, Tanaka H, Ohtani M, Sakakura Y, Kim HJ, Hagiwara A (2013) Ingestion by Japanese eel Anguilla japonica larvae on various minute zooplanktons. Aquac Sci 61:341–347

    Google Scholar 

  • Yoshimatsu T, Imoto H, Masahiro H, Toda K, Yoshimura K (1997) Preliminary results in improving essential fatty acids enrichment of rotifer cultured in high density. Hydrobiologia 358:153–157

    Article  CAS  Google Scholar 

  • Yoshimatsu T, Higuchi T, Zhang D, Fortes NR, Tanaka K, Yoshimura K (2006) Effect of dietary cobalt supplementation on the population growth of rotifer Brachionus rotundiformis. Fish Sci 72:214–216

    Article  CAS  Google Scholar 

  • Yoshimatsu T, Higuchi T, Hamasaki Y, Tanaka K (2008) Preliminary trials on the effect of lighting for the population growth of the rotifer, Brachionus plicatilis. JARQ 42:131–136

    Article  Google Scholar 

  • Yoshimura K, Miyamoto Y, Nakamura T (1992) High-density mass culture of the rotifer by feeding condensed Chlorella. Saibaigiken 21:1–6 (In Japanese)

    Google Scholar 

  • Yoshimura K, Kitajima C, Miyamoto Y, Kishimoto G (1994) Factors inhibiting growth of the rotifer Brachionus plicatilis in high-density cultivation by feeding condensed Chlorella. Nippon Suisan Gakkaishi 60:207–213 (In Japanese with English summary)

    Article  Google Scholar 

  • Yoshimura K, Iwata T, Tanaka K, Kitajima C, Ishizaki A (1995) A high-density cultivation of rotifer in an acidified medium for reducing undissociated ammonia. Nippon Suisan Gakkaishi 61:602–607 (In Japanese with English summary)

    Article  Google Scholar 

  • Yoshimura K, Ohmori Y, Yoshimatsu T, Tanaka K, Ishizaki A (1996a) On the aeration method in high density culture of the rotifer Brachionus rotundiformis. Nippon Suisan Gakkaishi 62:897–903 (In Japanese with English summary)

    Article  Google Scholar 

  • Yoshimura K, Hagiwara A, Yoshimatsu T, Kitajima C (1996b) Culture technology of marine rotifers and implication for intensive culture of marine fish in Japan. Mar Freshw Res 47:217–222

    Article  CAS  Google Scholar 

  • Yoshimura K, Usuki K, Yoshimatsu T, Kitajima C, Hagiwara A (1997) Recent developments of a high density mass culture system for the rotifer Brachionus rotundiformis Tschugunoff. Hydrobiologia 358:139–144

    Article  Google Scholar 

  • Yoshimura K, Tanaka K, Yoshimatsu T (2003) A novel culture system for the ultra-high-density production of the rotifer, Brachionus rotundiformis—a preliminary report. Aquaculture 227:165–172

    Article  Google Scholar 

  • Yu JP, Hino A, Ushiro M, Maeda M (1989) Function of bacteria as vitamin B12-producers during mass culture of the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 55:1799–1806

    Article  CAS  Google Scholar 

  • Yufera M, Pascual E (1989) Biomass and elemental composition (CHN) of the rotifer Brachionus plicatilis cultured as larval food. Hydrobiologia 186(187):371–374

    Article  Google Scholar 

  • Yufera M, Parra G, Pascual E (1997) Energy content of rotifers (Brachionus plicatilis and Brachionus rotundiformis) in relation to temperature. Hydrobiologia 358:83–87

    Article  Google Scholar 

  • Zink IC, Douillet PA, Benetti DD (2011) Improvement of rotifer Brachionus plicatilis population growth dynamics with inclusion of Bacillus spp. probiotics. Aquac Res 2011:1–12

    Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Dr. Kenji Yoshimura, who was a member of the Fukuoka Mariculture Research Group and contributed a lot for the development of high-density rotifer culture. We sincerely thank Japan Society for the Promotion of Science for providing a Fellowship to M. Amzad Hossain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Yoshimatsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimatsu, T., Hossain, M.A. Recent advances in the high-density rotifer culture in Japan. Aquacult Int 22, 1587–1603 (2014). https://doi.org/10.1007/s10499-014-9767-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-014-9767-5

Keywords

Navigation