Skip to main content

Advertisement

Log in

Temporal and Spatial Variabilities of Chemical and Physical Parameters on the Heron Island Coral Reef Platform

  • Original Article
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Globally, coral reefs are threatened by ocean warming and acidification. The degree to which acidification will impact reefs is dependent on the local hydrodynamics, benthic community composition, and biogeochemical processes, all of which vary on different temporal and spatial scales. Characterizing the natural spatiotemporal variability of seawater carbonate chemistry across different reefs is critical for elucidating future impacts on coral reefs. To date, most studies have focused on select habitats, whereas fewer studies have focused on reef scale variability. Here, we investigate the temporal and spatial seawater physicochemical variability across the entire Heron Island coral reef platform, Great Barrier Reef, Australia, for a limited duration of six days. Autonomous sensor measurements at three sites across the platform were complemented by reef-wide boat surveys and discrete sampling of seawater carbonate chemistry during the morning and evening. Variability in both temporal and spatial physicochemical properties were predominantly driven by solar irradiance (and its effect on biological activity) and the semidiurnal tidal cycles but were influenced by the local geomorphology resulting in isolation of the platform during low tide and rapid flooding during rising tides. As a result, seawater from previous tidal cycles was sometimes trapped in different parts of the reef leading to unexpected biogeochemical trends in space and time. This study illustrates the differences and limitations of data obtained from high-frequency measurements in a few locations compared to low-frequency measurements at high spatial resolution and coverage, showing the need for a combined approach to develop predictive capability of seawater physicochemical properties on coral reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albright R, Langdon C, Anthony K (2013) Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosci Discuss 10(5):7641–7676

    Google Scholar 

  • Albright R, Benthuysen J, Cantin N, Caldeira K, Anthony K (2015) Coral reef metabolism and carbon chemistry dynamics of a coral reef flat. Geophys Res Lett 42(10):3980–3988

    Google Scholar 

  • Albright R, Takeshita Y, Koweek DA, Ninokawa A, Wolfe K, Rivlin T, Nebuchina Y, Young J, Caldeira K (2018) Carbon dioxide addition to coral reef waters suppresses net community calcification. Nature 555(7697):516–519

    Google Scholar 

  • Allen Coral Atlas (2020) Imagery, maps and monitoring of the world's tropical coral reefs. https://doi.org/10.5281/zenodo.3833242

  • Andersson A, Kuffner I, Mackenzie F, Jokiel P, Rodgers K, Tan A (2009) Net loss of CaCO3 from coral reef communities due to human induced seawater acidification. Biogeosci Discuss 6(1)

  • Andersson A, Mackenzie F (2012) Revisiting four scientific debates in ocean acidification research. Biogeosciences 9(3):893–905

    Google Scholar 

  • Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Ann Rev Mar Sci 5:321–348

    Google Scholar 

  • Andersson AJ, Yeakel KL, Bates NR, De Putron SJ (2014) Partial offsets in ocean acidification from changing coral reef biogeochemistry. Nat Clim Chang 4(1):56–61

    Google Scholar 

  • Andersson AJ (2015) A fundamental paradigm for coral reef carbonate sediment dissolution. Front Mar Sci 2:52

    Google Scholar 

  • Anthony KR, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci 105(45):17442–17446

    Google Scholar 

  • Anthony KR, Kleypas JA, Gattuso JP (2011) Coral reefs modify their seawater carbon chemistry–implications for impacts of ocean acidification. Glob Change Biol 17(12):3655–3666

    Google Scholar 

  • Anthony KR, Diaz-Pulido G, Verlinden N, Tilbrook B, Andersson A (2013) Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosci Discuss 10(2):4897–4909

    Google Scholar 

  • Atkinson MJ, Smith SV (1983) C: N: P ratios of benthic marine plants 1. Limnol Oceanogr 28(3):568–574

    Google Scholar 

  • Bates N, Amat A, Andersson A (2010) Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification. Biogeosciences 7(8):2509–2530

    Article  Google Scholar 

  • Bell P (1992) Eutrophication and coral reefs—some examples in the Great Barrier Reef lagoon. Water Res 26(5):553–568

    Google Scholar 

  • Bolden IW, Sachs JP, Gagnon AC (2019) Temporally-variable productivity quotients on a coral atoll: implications for estimates of reef metabolism. Mar Chem 217:103707

    Google Scholar 

  • Brander KM (2007) Global fish production and climate change. Proc Natl Acad Sci 104(50):19709–19714

    Google Scholar 

  • Bresnahan PJ Jr, Martz TR, Takeshita Y, Johnson KS, LaShomb M (2014) Best practices for autonomous measurement of seawater pH with the Honeywell Durafet. Methods Oceanogr 9:44–60

    Google Scholar 

  • Brown KT, Bender-Champ D, Kubicek A, van der Zande R, Achlatis M, Hoegh-Guldberg O, Dove SG (2018) The dynamics of coral-algal interactions in space and time on the southern Great Barrier Reef. Front Mar Sci 5:181

    Google Scholar 

  • Brown KT, Bender-Champ D, Achlatis M, van Der Zande RM, Kubicek A, Martin SB, Castro-Sanguino C, Dove SG, Hoegh-Guldberg O (2020) Habitat-specific biogenic production and erosion influences net framework and sediment coral reef carbonate budgets. Limnol Oceanogr 66:349–365

    Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18(3):119–125

    Google Scholar 

  • Camp EF, Nitschke MR, Rodolfo-Metalpa R, Houlbreque F, Gardner SG, Smith DJ, Zampighi M, Suggett DJ (2017) Reef-building corals thrive within hot-acidified and deoxygenated waters. Sci Rep 7(1):1–9

    Google Scholar 

  • Carilli JE, Norris RD, Black BA, Walsh SM, McField M (2009) Local stressors reduce coral resilience to bleaching. PLoS ONE 4(7):e6324

    Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, DeVantier L (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321(5888):560–563

    Google Scholar 

  • Chan NC, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Change Biol 19(1):282–290

    Google Scholar 

  • Chisholm JR, Gattuso JP (1991) Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol Oceanogr 36(6):1232–1239

    Google Scholar 

  • Comeau S, Carpenter R, Edmunds P (2013) Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc R Soc B Biol Sci 280(1753):20122374

    Google Scholar 

  • Costanza R, d’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’neill RV, Paruelo J (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260

    Google Scholar 

  • Costanza R, De Groot R, Sutton P, Van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158

    Google Scholar 

  • Courtney T, De Carlo E, Page H, Bahr K, Barro A, Howins N, Tabata R, Terlouw G, Rodgers K, Andersson A (2018) Recovery of reef-scale calcification following a bleaching event in Kāne’ohe Bay, Hawai’i. Limnol Oceanogr Lett 3(1):1–9

    Google Scholar 

  • Crossland C, Hatcher B, Smith S (1991) Role of coral reefs in global ocean production. Coral reefs 10(2):55–64

    Article  Google Scholar 

  • Cyronak T, Santos IR, Eyre BD (2013a) Permeable coral reef sediment dissolution driven by elevated pCO2 and pore water advection. Geophysical Research Letters 40(18):4876–4881

  • Cyronak T, Santos IR, McMahon A, Eyre BD (2013b) Carbon cycling hysteresis in permeable carbonate sands over a diel cycle: implications for ocean acidification. Limnology and Oceanography 58(1):131–143

    Article  Google Scholar 

  • Cyronak T, Schulz KG, Santos IR, Eyre BD (2014a) Enhanced acidification of global coral reefs driven by regional biogeochemical feedbacks. Geophys Res Lett 41(15):5538–5546

    Google Scholar 

  • Cyronak T, Santos IR, Erler DV, Maher DT, Eyre BD (2014b) Drivers of pCO2 variability in two contrasting coral reef lagoons: The influence of submarine groundwater discharge. Global Biogeochem Cycles 28(4):398–414

    Google Scholar 

  • Cyronak T, Andersson AJ, Langdon C, Albright R, Bates NR, Caldeira K, Carlton R, Corredor JE, Dunbar RB, Enochs I (2018) Taking the metabolic pulse of the world’s coral reefs. PLoS ONE 13(1):e0190872

    Google Scholar 

  • Cyronak T, Takeshita Y, Courtney TA, DeCarlo EH, Eyre BD, Kline DI, Martz T, Page H, Price NN, Smith J (2020) Diel temperature and pH variability scale with depth across diverse coral reef habitats. Limnol Oceanogr Lett 5(2):193–203

    Google Scholar 

  • De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323(5910):116–119

    Google Scholar 

  • DeCarlo TM, Karnauskas KB, Davis KA, Wong GT (2015) Climate modulates internal wave activity in the Northern South China Sea. Geophys Res Lett 42(3):831–838

    Google Scholar 

  • DeCarlo TM, Cohen AL, Wong GT, Shiah FK, Lentz SJ, Davis KA, Shamberger KE, Lohmann P (2017) Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification. J Geophys Res Oceans 122(1):745–761

    Google Scholar 

  • Deffeyes KS (1965) Carbonate equilibria: a graphic and algebraic approach 1. Limnol Oceanogr 10(3):412–426

    Google Scholar 

  • Dickson A, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A Oceanogr Res Pap 34(10):1733–1743

    Google Scholar 

  • Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res Part A Oceanogr Res Pap 37(5):755–766

    Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. North Pacific Marine Science Organization

  • Dove SG, Kline DI, Pantos O, Angly FE, Tyson GW, Hoegh-Guldberg O (2013) Future reef decalcification under a business-as-usual CO2 emission scenario. Proc Natl Acad Sci 110(38):15342–15347

    Google Scholar 

  • Edmunds PJ, Comeau S, Lantz C, Andersson A, Briggs C, Cohen A, Gattuso J-P, Grady JM, Gross K, Johnson M (2016) Integrating the effects of ocean acidification across functional scales on tropical coral reefs. Bioscience 66(5):350–362

    Google Scholar 

  • England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Gupta AS, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Chang 3:222–227

    Google Scholar 

  • Enochs IC, Manzello DP, Jones PJ, Aguilar C, Cohen K, Valentino L, Schopmeyer S, Kolodziej G, Jankulak M, Lirman D (2018) The influence of diel carbonate chemistry fluctuations on the calcification rate of Acropora cervicornis under present day and future acidification conditions. J Exp Mar Biol Ecol 506:135–143

    Google Scholar 

  • Eyre BD, Andersson AJ, Cyronak T (2014) Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat Clim Chang 4(11):969–976

    Google Scholar 

  • Eyre BD, Cyronak T, Drupp P, De Carlo EH, Sachs JP, Andersson AJ (2018) Coral reefs will transition to net dissolving before end of century. Science 359(6378):908–911

    Google Scholar 

  • Falter JL, Lowe RJ, Atkinson MJ, Cuet P (2012) Seasonal coupling and de‐coupling of net calcification rates from coral reef metabolism and carbonate chemistry at Ningaloo Reef, Western Australia. J Geophys Res Oceans 117(C5)

  • Falter JL, Lowe RJ, Zhang Z, McCulloch M (2013) Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology. PLoS ONE 8(1):e53303

    Google Scholar 

  • Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39(1):160–183

    Google Scholar 

  • Georgiou L, Falter J, Trotter J, Kline DI, Holcomb M, Dove SG, Hoegh-Guldberg O, McCulloch M (2015) pH homeostasis during coral calcification in a free ocean CO2 enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef. Proc Natl Acad Sci 112(43):13219–13224

    Google Scholar 

  • Glud RN, Eyre BD, Patten N (2008) Biogeochemical responses to mass coral spawning at the Great Barrier Reef: effects on respiration and primary production. Limnol Oceanogr 53(3):1014–1024

    Google Scholar 

  • Gourlay M, Hacker JL (1999) Influence of waves and winds on reef-top currents at Heron Island, Southern Great Barrier Reef. In: Coasts and Ports (1999) Challenges and directions for the new century; Proceedings of the 14th Australasian coastal and ocean engineering conference and the 7th Australasian port and harbour conference. National Committee on Coastal and Ocean Engineering, Institution of…, p 209

  • Gourlay MR, Hacker JL (2008) Reef-top currents in vicinity of Heron Island boat harbour, Great Barrier Reef, Australia: 2. Specific influences of tides meteorological events and waves.

  • Hendriks IE, Duarte CM, Álvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuar Coast Shelf Sci 86(2):157–164

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737–1742

    Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328(5985):1523–1528

    Google Scholar 

  • Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA (2010) The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annu Rev Ecol Evol Syst 41:127–147

    Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JB, Kleypas J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301(5635):929–933

    Google Scholar 

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G (2018a) Global warming transforms coral reef assemblages. Nature 556(7702):492–496

    Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC (2018b) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359(6371):80–83

    Google Scholar 

  • Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293(5530):629–637

    Google Scholar 

  • Johnson MD, Price NN, Smith JE (2014) Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. PeerJ 2:e411

    Google Scholar 

  • Jokiel P, Rodgers K, Kuffner I, Andersson A, Cox E, Mackenzie F (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27(3):473–483

    Google Scholar 

  • Kapsenberg L, Cyronak T (2019) Ocean acidification refugia in variable environments. Glob Change Biol 25(10):3201–3214

    Google Scholar 

  • Kessler AJ, Rogers A, Cyronak T, Bourke MF, Hasler-Sheetal H, Glud RN, Greening C, Meysman FJ, Eyre BD, Cook PL (2020) Pore water conditions driving calcium carbonate dissolution in reef sands. Geochimica et Cosmochimica Acta 279:16–28

  • Kinsey D (1985) Metabolism, calcification and production: I systems level studies. Proc Fifth Inter Coral Reef Congr 4:503–542

    Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118–120

    Google Scholar 

  • Kleypas JA, Yates KK (2009) Coral reefs and ocean acidification. Oceanography 22(4):108–117

    Google Scholar 

  • Kleypas JA, Anthony KR, Gattuso JP (2011) Coral reefs modify their seawater carbon chemistry–case study from a barrier reef (Moorea, French Polynesia). Glob Change Biol 17(12):3667–3678

    Google Scholar 

  • Kline DI, Teneva L, Schneider K, Miard T, Chai A, Marker M, Headley K, Opdyke B, Nash M, Valetich M (2012) A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Sci Rep 2(1):1–9

    Google Scholar 

  • Kline DI, Teneva L, Hauri C, Schneider K, Miard T, Chai A, Marker M, Dunbar R, Caldeira K, Lazar B (2015) Six month in situ high-resolution carbonate chemistry and temperature study on a coral reef flat reveals asynchronous pH and temperature anomalies. PLoS ONE 10(6):e0127648

    Google Scholar 

  • Koweek D, Dunbar RB, Rogers JS, Williams GJ, Price N, Mucciarone D, Teneva L (2015a) Environmental and ecological controls of coral community metabolism on Palmyra Atoll. Coral Reefs 34(1):339–351

    Google Scholar 

  • Koweek DA, Dunbar RB, Monismith SG, Mucciarone DA, Woodson CB, Samuel L (2015b) High-resolution physical and biogeochemical variability from a shallow back reef on Ofu, American Samoa: an end-member perspective. Coral Reefs 34(3):979–991

    Google Scholar 

  • Langdon C, Atkinson M (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res Oceans 110(C9)

  • Lowe RJ, Falter JL (2015) Oceanic forcing of coral reefs. Ann Rev Mar Sci 7:43–66

    Google Scholar 

  • Lowe RJ, Pivan X, Falter J, Symonds G, Gruber R (2016) Rising sea levels will reduce extreme temperature variations in tide-dominated reef habitats. Sci Adv 2(8):e1600825

    Google Scholar 

  • Manzello DP (2010) Ocean acidification hotspots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnol Oceanogr 55(1):239–248

    Google Scholar 

  • Manzello DP, Enochs IC, Melo N, Gledhill DK, Johns EM (2012) Ocean acidification refugia of the Florida Reef Tract. PLoS ONE 7(7):e41715

    Google Scholar 

  • Marshall P, Baird A (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19(2):155–163

    Google Scholar 

  • Martz TR, Connery JG, Johnson KS (2010) Testing the Honeywell Durafet® for seawater pH applications. Limnol Oceanogr Methods 8(5):172–184

    Google Scholar 

  • McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Chang 2(8):623–627

    Google Scholar 

  • McKinney D (2009) A survey of the scleractinian corals at Mermaid, Scott, and Seringapatam Reefs, Western Australia. Rec West Aust Mus Suppl 77(1):105–143

    Google Scholar 

  • McMahon A, Santos IR, Cyronak T, Eyre BD (2013) Hysteresis between coral reef calcification and the seawater aragonite saturation state. Geophysical Research Letters 40(17):4675–4679

    Article  Google Scholar 

  • McMahon A, Santos IR, Schulz KG, Cyronak T, Maher DT (2018) Determining coral reef calcification and primary production using automated alkalinity, pH and pCO2 measurements at high temporal resolution. Estuar Coast Shelf Sci 209:80–88

    Google Scholar 

  • Mehrbach C, Culberson C, Hawley J, Pytkowicx R (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure 1. Limnol Oceanogr 18(6):897–907

    Google Scholar 

  • Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29(2):215–233

    Google Scholar 

  • Mongin M, Baird M (2014) The interacting effects of photosynthesis, calcification and water circulation on carbon chemistry variability on a coral reef flat: a modelling study. Ecol Model 284:19–34

    Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681–686

    Google Scholar 

  • Page HN, Andersson AJ, Jokiel PL, Ku’ulei SR, Lebrato M, Yeakel K, Davidson C, D’Angelo S, Bahr KD (2016) Differential modification of seawater carbonate chemistry by major coral reef benthic communities. Coral Reefs 35(4):1311–1325

    Google Scholar 

  • Page HN, Courtney TA, Collins A, De Carlo EH, Andersson AJ (2017) Net community metabolism and seawater carbonate chemistry scale non-intuitively with coral cover. Front Mar Sci 4:161

    Google Scholar 

  • Page HN, Courtney TA, De Carlo EH, Howins NM, Koester I, Andersson AJ (2019) Spatiotemporal variability in seawater carbon chemistry for a coral reef flat in Kāne ‘ohe Bay, Hawai ‘i. Limnol Oceanogr 64(3):913–934

    Google Scholar 

  • Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344(6186):895–898

    Google Scholar 

  • Pandolfi JM, Jackson JB, Baron N, Bradbury RH, Guzman HM, Hughes TP, Kappel C, Micheli F, Ogden JC, Possingham HP (2005) Are US coral reefs on the slippery slope to slime? Am Assoc Adv Sci 307:1725–1726

    Google Scholar 

  • Phinn SR, Roelfsema CM, Mumby PJ (2012) Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int J Remote Sens 33(12):3768–3797

    Google Scholar 

  • Rees M, Colquhoun J, Smith L, Heyward A (2003) Coral Communities at Ashmore Reef, Cartier Reef and Mermaid Reef, Northwestern Australia

  • Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Progr Ser Oldendorf 62(1):185–202

    Google Scholar 

  • Safaie A, Silbiger NJ, McClanahan TR, Pawlak G, Barshis DJ, Hench JL, Rogers JS, Williams GJ, Davis KA (2018) High frequency temperature variability reduces the risk of coral bleaching. Nat Commun 9(1):1–2

    Google Scholar 

  • Santos IR, Glud RN, Maher D, Erler D, Eyre BD (2011) Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island, Great Barrier Reef. Geophys Res Lett 38(3)

  • Shamberger K, Feely R, Sabine C, Atkinson M, DeCarlo E, Mackenzie F, Drupp P, Butterfield D (2011) Calcification and organic production on a Hawaiian coral reef. Mar Chem 127(1–4):64–75

    Google Scholar 

  • Shamberger KE, Lentz SJ, Cohen AL (2018) Low and variable ecosystem calcification in a coral reef lagoon under natural acidification. Limnol Oceanogr 63(2):714–730

    Google Scholar 

  • Shaw EC, McNeil BI, Tilbrook B (2012) Impacts of ocean acidification in naturally variable coral reef flat ecosystems. J Geophys Res Oceans 117(C3)

  • Smith S, Key G (1975) Carbon dioxide and metabolism in marine environments 1. Limnol Oceanogr 20(3):493–495

    Google Scholar 

  • Smith S (1978) Calcification and organic carbon metabolism as indicated by carbon dioxide. Coral Reefs Res Methods, pp 469–484

  • Steven ADL, Pantus F, Brooks D, Trott L (1998) Longterm chlorophyll monitoring in the Great Barrier Reef Lagoon. Status Rep 1:1993–1995 (Great Barrier Reef Marine Park Authority: Townsville)

    Google Scholar 

  • Stoltenberg L, Schulz KG, Cyronak T, Eyre BD (2020) Seasonal variability of calcium carbonate precipitation and dissolution in shallow coral reef sediments. Limnol Oceanogr 65(4):876–891

    Google Scholar 

  • Stoltenberg L, Schulz KG, Lantz CA, Cyronak T, Eyre BD (2021) Late afternoon seasonal transition to dissolution in a coral reef: an early warning of a net dissolving ecosystem? Geophys Res Lett 48:e2020GL090811

    Google Scholar 

  • Sutton AJ, Sabine CL, Maenner-Jones S, Lawrence-Slavas N, Meinig C, Feely R, Mathis J, Musielewicz S, Bott R, McLain P (2014) A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system. Earth Syst Sci Data 6(2):353–366

    Google Scholar 

  • Suzuki A, Kawahata H (2003) Carbon budget of coral reef systems: an overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions. Tellus B Chem Phys Meteorol 55(2):428–444

    Google Scholar 

  • Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res Part II 56(8–10):554–577

    Google Scholar 

  • Takeshita Y, Cyronak T, Martz TR, Kindeberg T, Andersson AJ (2018) Coral reef carbonate chemistry variability at different functional scales. Front Mar Sci 5:175

    Google Scholar 

  • Tilbrook B, van Ooijen E, Neill C, Sutton AJ, Sabine CL, Musielewicz S (2012) High-resolution ocean and atmosphere pCO2 time-series measurements from moorings Heron_Island_152E_23S, Kangaroo_Island_136E_36S and Maria_Island_148E_43S in the Coral Sea, Great Australian Bight and Tasman Sea from 2009-10-09 to 2017-09-04 (NCEI Accession 0100062). Version 3.3. National Oceanographic Data Center, NOAA. Dataset. https://doi.org/10.3334/CDIAC/OTG.TSM_HERON_152E_23S [04/10/2020]

  • Uppstrom L (1974) The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res 21:161–162

    Google Scholar 

  • Van Heuven S, Pierrot D, Rae J, Lewis E, Wallace D (2011) MATLAB program developed for CO2 system calculations. ORNL/CDIAC-105b Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee 530

  • Van Hooidonk R, Maynard J, Planes S (2013) Temporary refugia for coral reefs in a warming world. Nat Clim Chang 3(5):508–511

    Google Scholar 

  • Venti A, Andersson A, Langdon C (2014) Multiple driving factors explain spatial and temporal variability in coral calcification rates on the Bermuda platform. Coral Reefs 33(4):979–997

    Google Scholar 

  • Walter LM, Morse JW (1985) The dissolution kinetics of shallow marine carbonates in seawater: a laboratory study. Geochim Cosmochim Acta 49(7):1503–1513

    Google Scholar 

  • Watanabe A, Kayanne H, Hata H, Kudo S, Nozaki K, Kato K, Negishi A, Ikeda Y, Yamano H (2006) Analysis of the seawater CO2 system in the barrier reef-lagoon system of Palau using total alkalinity-dissolved inorganic carbon diagrams. Limnol Oceanogr 51(4):1614–1628

    Google Scholar 

  • Wisshak M, Schönberg CH, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS ONE 7(9):e45124

    Google Scholar 

  • Yeakel KL, Andersson AJ, Bates NR, Noyes TJ, Collins A, Garley R (2015) Shifts in coral reef biogeochemistry and resulting acidification linked to offshore productivity. Proc Natl Acad Sci 112(47):14512–14517

    Google Scholar 

  • Zhang Z, Falter J, Lowe R, Ivey G, McCulloch M (2013) Atmospheric forcing intensifies the effects of regional ocean warming on reef-scale temperature anomalies during a coral bleaching event. J Geophys Res Oceans 118(9):4600–4616

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Heron Island Research Station staff for their help with facilitating this project. We are also grateful for the constructive feedback by two anonymous reviewers and the associate editor that significantly improved this manuscript. The research was supported by funding from NSF OCE 12-55042 (AJA) and Australian Council Discovery Grant 150102092 (BDE and AJA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuel A. H. Kekuewa or Andreas J. Andersson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kekuewa, S.A.H., Courtney, T.A., Cyronak, T. et al. Temporal and Spatial Variabilities of Chemical and Physical Parameters on the Heron Island Coral Reef Platform. Aquat Geochem 27, 241–268 (2021). https://doi.org/10.1007/s10498-021-09400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-021-09400-7

Keywords

Navigation