Skip to main content
Log in

Higher replication potential of West Nile virus governs apoptosis induction in human neuroblastoma cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The extent of neuronal cell damage caused by West Nile virus (WNV) infection governs the disease severity ranging from mild, febrile illness to fatal encephalitis. Availability of naturally occurring genetic variants is helpful to study viral factors governing differential pathogenesis. During WNV infection, apoptosis serves as a virulence determinant positively contributing to viral pathogenesis. We investigated the levels of apoptosis induced by a low neurovirulent WNV lineage 5 strain 804994 and a high neurovirulent lineage 1 strain 68856 in human neuroblastoma cells, IMR-32. Our investigations clearly show the correlation between higher multiplication capacities of 68856 with higher levels of cytopathology induced by apoptosis. We observed activation of both the extrinsic and intrinsic apoptotic pathways during WNV infection. Infection with higher neurovirulent strain resulted in higher upregulation of pro-apoptotic proteins including death receptors (DR), adaptor protein, BH3-only regulatory proteins and higher cleavage of initiator caspases of both pathways. These results suggest that the virulence of a WNV strain may correlate with its higher replication fitness and ability to cause more cellular damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data generated during and analysed during this study is included in the supplementary file, which will be available from the corresponding author on reasonable request.

References

  1. Chancey C, Grinev A, Volkova E, Rios M (2015) The global ecology and epidemiology of west nile virus. BioMed Res Int. https://doi.org/10.1155/2015/376230

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ronca SE, Murray KO, Nolan MS (2019) Cumulative incidence of West Nile virus infection, continental United States, 1999–2016. Emerg Infect Dis 25(2):325–327. https://doi.org/10.3201/eid2502.180765

    Article  PubMed  PubMed Central  Google Scholar 

  3. Statistics & Maps. (2022, October 14). Centers for Disease Control and Prevention [CDC]. Accessed September 9th, 2022, from https://www.cdc.gov/westnile/statsmaps/index.html

  4. Fall G, Di Paola N, Faye M, Dia M, de Freire CCM, Loucoubar C, de Zanotto PMA, Faye O, Sall AA (2017) Biological and phylogenetic characteristics of West African lineages of West Nile virus. PLoS Negl Trop Dis 11(11):1–23. https://doi.org/10.1371/journal.pntd.0006078

    Article  CAS  Google Scholar 

  5. Platonov AE, Karan LS, Shopenskaia TA, Fedorova MV, Koliasnikova NM, Rusakova NM, Shishkina LV, Arshba TE, Zhuravlev VI, Govorukhina MV, Valentseva AA, Shipulin GA (2011) Genotyping of West Nile fever virus strains circulating in southern Russia as an epidemiological investigation method: principles and results. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii 2:29–37

    Google Scholar 

  6. Bakonyi T, Ferenczi E, Erdélyi K, Kutasi O, Csörgo T, Seidel B, Weissenböck H, Brugger K, Bán E, Nowotny N (2013) Explosive spread of a neuroinvasive lineage 2 West Nile virus in Central Europe, 2008/2009. Vet Microbiol 165(1–2):61–70. https://doi.org/10.1016/j.vetmic.2013.03.005

    Article  PubMed  Google Scholar 

  7. Bondre VP, Jadi RS, Mishra AC, Yergolkar PN, Arankalle VA (2007) West Nile virus isolates from India: evidence for a distinct genetic lineage. J Gen Virol 88(3):875–884. https://doi.org/10.1099/vir.0.82403-0

    Article  CAS  PubMed  Google Scholar 

  8. Chowdhury P, Khan SA, Dutta P, Topno R, Mahanta J (2014) Characterization of West Nile virus (WNV) isolates from Assam, India: Insights into the circulating WNV in northeastern India. Comp Immunol Microbiol Infect Dis 37(1):39–47. https://doi.org/10.1016/j.cimid.2013.10.006

    Article  PubMed  Google Scholar 

  9. Frost MJ, Zhang J, Edmonds JH, Prow NA, Gu X, Davis R, Hornitzky C, Arzey KE, Finlaison D, Hick P, Read A, Hobson-Peters J, May FJ, Doggett SL, Haniotis J, Russell RC, Hall RA, Khromykh AA, Kirkland PD (2012) Characterization of virulent West Nile virus Kunjin strain, Australia 2011. Emerging Infect Dis. https://doi.org/10.3201/eid1805.111720

    Article  Google Scholar 

  10. Smithburn KC, Kerr JA, Gatne PB (1954) Neutralizing antibodies against certain viruses in the sera of residents of India. J Immunol 72(4):248LP – 257

    Article  Google Scholar 

  11. Paramasivan SR, Mishra AC, Mourya DT (2003) West Nile virus: The Indian scenario. Indian J Med Res 118:101–108

    CAS  PubMed  Google Scholar 

  12. Khatun T, Chatterjee S (2017) Emergence of West Nile virus in West Bengal, India: a new report. Trans R Soc Trop Med Hyg 111(4):178–184. https://doi.org/10.1093/trstmh/trx033

    Article  PubMed  Google Scholar 

  13. Tandel K, Sharma S, Dash PK, Shukla J, Parida M (2019) Emergence of human West Nile Virus infection among pediatric population in Madhya Pradesh, India. J Med Virol 91(3):493–497. https://doi.org/10.1002/jmv.25325

    Article  CAS  PubMed  Google Scholar 

  14. Anukumar B, Sapkal GN, Tandale BV, Balasubramanian R, Gangale D (2014) West Nile encephalitis outbreak in Kerala, India, 2011. J Clin Virol 61(1):152–155. https://doi.org/10.1016/j.jcv.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  15. Fiacre L, Pagès N, Albina E, Richardson J, Lecollinet S, Gonzalez G (2020) Molecular determinants of west Nile virus virulence and pathogenesis in vertebrate and invertebrate hosts. Int J Mol Sci 21(23):1–35. https://doi.org/10.3390/ijms21239117

    Article  CAS  Google Scholar 

  16. Donadieu E, Lowenski S, Servely JL, Laloy E, Lilin T, Nowotny N, Richardson J, Zientara S, Lecollinet S, Coulpier M (2013) Comparison of the neuropathology induced by two West Nile virus strains. PLoS ONE. https://doi.org/10.1371/journal.pone.0084473

    Article  PubMed  PubMed Central  Google Scholar 

  17. Worwa G, Wheeler SS, Brault AC, Reisen WK (2015) Comparing competitive fitness of West Nile virus strains in avian and mosquito hosts. PLoS ONE. https://doi.org/10.1371/journal.pone.0125668

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gamino V, Pérez-Ramírez E, Gutiérrez-Guzmán AV, Sotelo E, Llorente F, Jiménez-Clavero MÁ, Höfle U (2021) Pathogenesis of two western mediterranean west nile virus lineage 1 isolates in experimentally infected red-legged partridges (Alectoris rufa). Pathogens. https://doi.org/10.3390/pathogens10060748

    Article  PubMed  PubMed Central  Google Scholar 

  19. Beasley DWC, Li L, Suderman MT, Barrett ADT (2002) Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296(1):17–23. https://doi.org/10.1006/viro.2002.1372

    Article  CAS  PubMed  Google Scholar 

  20. Barzon L, Pacenti M, Montarsi F, Fornasiero D, Gobbo F, Quaranta E, Monne I, Fusaro A, Volpe A, Sinigaglia A, Riccetti S, Molin ED, Satto S, Lisi V, Gobbi F, Galante S, Feltrin G, Valeriano V, Favero L, Russo F, Capelli G (2022) Rapid spread of a new West Nile virus lineage 1 associated with increased risk of neuroinvasive disease during a large outbreak in northern Italy, 2022: One Health analysis. J Travel Med. https://doi.org/10.1093/jtm/taac125

    Article  PubMed  Google Scholar 

  21. Swanson PA, McGavern DB (2015) Viral diseases of the central nervous system. Curr Opin Virol 11:44–54. https://doi.org/10.1016/j.coviro.2014.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shrestha B, Gottlieb D, Diamond MS (2003) Infection and injury of neurons by West NileEncephalitisVirus. J Virol 77(24):13203–13213. https://doi.org/10.1128/jvi.77.24.13203-13213.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guarner J, Shieh WJ, Hunter S, Paddock CD, Morken T, Campbell GL, Marfin AA, Zaki SR (2004) Clinicopathologic study and laboratory diagnosis of 23 cases with West Nile virus encephalomyelitis. Hum Pathol 35(8):983–990. https://doi.org/10.1016/j.humpath.2004.04.008

    Article  PubMed  Google Scholar 

  24. Cheeran MC-J, Hu S, Sheng WS, Rashid A, Peterson PK, Lokensgard JR (2005) Differential responses of human brain cells to West Nile virus infection. J Neurovirol 11(6):512–524. https://doi.org/10.1080/13550280500384982

    Article  CAS  PubMed  Google Scholar 

  25. Kumar M, Verma S, Nerurkar VR (2010) Pro-inflammatory cytokines derived from West Nile virus (WNV)-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death. J Neuroinflammation 7(1):73. https://doi.org/10.1186/1742-2094-7-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kleinschmidt MC, Michaelis M, Ogbomo H, Doerr HW, Cinatl J (2007) Inhibition of apoptosis prevents West Nile virus induced cell death. BMC Microbiol 7:1–8. https://doi.org/10.1186/1471-2180-7-49

    Article  CAS  Google Scholar 

  27. Ghosh Roy S, Datan E, Sadigh B, Lockshin RA, Zakeri Z (2014) Regulation of cell survival and death during Flavivirus infections. World J Biol Chem 5(2):93–105. https://doi.org/10.4331/wjbc.v5.i2.93

    Article  PubMed  PubMed Central  Google Scholar 

  28. Samuel MA, Morrey JD, Diamond MS (2007) Caspase 3-dependent cell death of neurons contributes to the pathogenesis of West Nile virus encephalitis. J Virol 81(6):2614–2623. https://doi.org/10.1128/jvi.02311-06

    Article  CAS  PubMed  Google Scholar 

  29. Peng BH, Wang T (2019) West Nile virus induced cell death in the central nervous system. Pathogens 8(4):215. https://doi.org/10.3390/pathogens8040215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clarke P, Tyler KL (2009) Apoptosis in animal models of virus-induced disease. Nat Rev Microbiol 7(2):144–155. https://doi.org/10.1038/nrmicro2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baer A, Kehn-Hall K (2014) Viral concentration determination through plaque assays: using traditional and novel overlay systems. J Vis Exp 93:1–10. https://doi.org/10.3791/52065

    Article  CAS  Google Scholar 

  32. Pavitrakar DV, Ayachit VM, Mundhra S, Bondre VP (2015) Development and characterization of reverse genetics system for the Indian West Nile virus lineage 1 strain 68856. J Virol Methods 226:31–39. https://doi.org/10.1016/j.jviromet.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  33. Kamiloglu S, Sari G, Ozdal T, Capanoglu E (2020) Guidelines for cell viability assays. Food Frontiers 1(3):332–349. https://doi.org/10.1002/fft2.44

    Article  Google Scholar 

  34. Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol. https://doi.org/10.1186/1472-6750-5-12

    Article  PubMed  PubMed Central  Google Scholar 

  35. Okamoto T, Suzuki T, Kusakabe S, Tokunaga M, Hirano J, Miyata Y, Matsuura Y (2017) Regulation of apoptosis during flavivirus infection. Viruses. https://doi.org/10.3390/v9090243

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mazar J, Li Y, Rosado A, Phelan P, Kedarinath K, Parks GD, Alexander KA, Westmoreland TJ (2018) Zika virus as an oncolytic treatment of human neuroblastoma cells requires CD24. PLoS ONE. https://doi.org/10.1371/journal.pone.0200358

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brault AC, Huang CYH, Langevin SA, Kinney RM, Bowen RA, Ramey WN, Panella NA, Holmes EC, Powers AM, Miller BR (2007) A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Gene 39(9):1162–1166

    Article  CAS  Google Scholar 

  38. Moudy RM, Zhang B, Shi PY, Kramer LD (2009) West Nile virus envelope protein glycosylation is required for efficient viral transmission by Culex vectors. Virology 387(1):222–228. https://doi.org/10.1016/j.virol.2009.01.038

    Article  CAS  PubMed  Google Scholar 

  39. del Carmen Parquet M, Kumatori A, Hasebe F, Morita K, Igarashi A (2001) West Nile virus-induced bax-dependent apoptosis. FEBS Lett 500(1–2):17–24. https://doi.org/10.1016/S0014-5793(01)02573-X

    Article  Google Scholar 

  40. Vaidyanathan R, Scott TW (2006) Apoptosis in mosquito midgut epithelia associated with West Nile virus infection. Apoptosis 11(9):1643–1651. https://doi.org/10.1007/s10495-006-8783-y

    Article  CAS  PubMed  Google Scholar 

  41. Elmore S (2007) Apoptosis: A review of programmed cell death. In Toxicologic Pathology. https://doi.org/10.1080/01926230701320337

    Article  Google Scholar 

  42. Martinez MM, Reif RD, Pappas D (2010) Detection of apoptosis: a review of conventional and novel techniques. Anal Method 2(8):996–1004. https://doi.org/10.1039/C0AY00247J

    Article  CAS  Google Scholar 

  43. Sánchez-Osuna M, Garcia-Belinchón M, Iglesias-Guimarais V, Gil-Guinón E, Casañelles E, Yuste VJ (2014) Caspase-activated DNase is necessary and sufficient for oligonucleosomal DNA breakdown, but not for chromatin disassembly during caspase-dependent apoptosis of LN-18 glioblastoma cells. J Biol Chem 289(27):18752–18769. https://doi.org/10.1074/jbc.M114.550020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chu JJH, Ng ML (2003) The mechanism of cell death during West Nile virus infection is dependent on initial infectious dose. J Gen Virol 84(12):3305–3314. https://doi.org/10.1099/vir.0.19447-0

    Article  CAS  PubMed  Google Scholar 

  45. Munoz-Erazo, L., Natoli, R., Provis, J. M., Madigan, M. C., & King, N. J. C. (2012). Microarray analysis of gene expression in West Nile virus-infected human retinal pigment epithelium. In Molecular Vision (Vol. 18). http://www.molvis.org/molvis/v18/a78

  46. Shrestha B, Diamond MS (2007) Fas ligand interactions contribute to CD8 + T-cell-mediated control of West Nile virus infection in the central nervous system. J Virol 81(21):11749–11757. https://doi.org/10.1128/jvi.01136-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clarke P, Leser JS, Quick ED, Dionne KR, Beckham JD, Tyler KL (2014) Death receptor-mediated apoptotic signaling is activated in the brain following infection with West Nile virus in the absence of a peripheral immune response. J Virol 88(2):1080–1089. https://doi.org/10.1128/jvi.02944-13

    Article  PubMed  PubMed Central  Google Scholar 

  48. Venter M, Myers TG, Wilson MA, Kindt TJ, Paweska JT, Burt FJ, Leman PA, Swanepoel R (2005) Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology 342(1):119–140. https://doi.org/10.1016/j.virol.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  49. Kumar M, Belcaid M, Nerurkar VR (2016) Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis. Sci Rep 6(March):1–14. https://doi.org/10.1038/srep26350

    Article  CAS  Google Scholar 

  50. Medigeshi GR, Lancaster AM, Hirsch AJ, Briese T, Lipkin WI, DeFilippis V, Früh K, Mason PW, Nikolich-Zugich J, Nelson JA (2007) West Nile Virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. J Virol 81(20):10849–10860. https://doi.org/10.1128/jvi.01151-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director, ICMR-NIV, Pune for continuous support and critical evaluation of the work. We are grateful to the technical and scientific staff of the Encephalitis Group for providing active support and critique during the work. We are also thankful to the Director General, ICMR and CSIR, New Delhi, India and for financial support (project ID: ENC1304).

Funding

Research work was funded by Indian Council of Medical Research (ICMR, NIV ID: ENC1304).

Author information

Authors and Affiliations

Authors

Contributions

SM performed all the experiments, data analysis and manuscript writing; VPB conceived concept, planning and supervising of experiments, data analysis and manuscript editing.

Corresponding author

Correspondence to Vijay P. Bondre.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Ethical approval

Study was approved by the Institutional Biosafety Committee, ICMR-NIV, Pune (IBSC:2013–39). This study does not involve any animal experiments while the standard antiviral sera was procured from Virus Registry, ICMR-NIV, Pune.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 381 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mundhra, S., Bondre, V.P. Higher replication potential of West Nile virus governs apoptosis induction in human neuroblastoma cells. Apoptosis 28, 1113–1127 (2023). https://doi.org/10.1007/s10495-023-01844-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01844-2

Keywords

Navigation