Skip to main content

Advertisement

Log in

Targeting ferroptosis: a novel insight against myocardial infarction and ischemia–reperfusion injuries

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Ferroptosis, a newly discovered form of regulated cell death dependent on iron and reactive oxygen species, is mainly characterized by mitochondrial shrinkage, increased density of bilayer membranes and the accumulation of lipid peroxidation, causing membrane lipid peroxidation and eventually cell death. Similar with the most forms of regulated cell death, ferroptosis also participated in the pathological metabolism of myocardial infarction and myocardial ischemia/reperfusion injuries, which are still the leading causes of death worldwide. Given the crucial roles ferroptosis played in cardiovascular diseases, such as myocardial infarction and myocardial ischemia/reperfusion injuries, it is considerable to delve into the molecular mechanisms of ferroptosis contributing to the progress of cardiovascular diseases, which might offer the potential role of ferroptosis as a targeted treatment for a wide range of cardiovascular diseases. This review systematically summarizes the process and regulatory metabolisms of ferroptosis, discusses the relationship between ferroptosis and myocardial infarction as well as myocardial ischemia/reperfusion injuries, which might potentially provide novel insights for the pathological metabolism and original ideas for the prevention as well as treatment targeting ferroptosis of cardiovascular diseases such as myocardial infarction and myocardial ischemia/reperfusion injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All the data generated during this study are included in this article and are available upon reasonable request to the first author.

Abbreviations

RCD:

Regulated cell death

MI:

Myocardial infarction

MIRI:

Myocardial ischemia/reperfusion injuries

CVDs:

Cardiovascular diseases

HF:

Heart failure

ROS:

Reactive oxygen species

RSL3:

RAS-selective lethal compound 3

PUFAs:

Polyunsaturated fatty acids

MUFAs:

Monounsaturated fatty acids

ACSL4:

Acyl-CoA synthetase long-chain family member 4

LPCAT3:

Lysophosphatidyl choline acyltransferase 3

LOXs:

Lipoxygenases

Lip:

Labile iron pool

GPX4:

Glutathione peroxidase 4

DMT1:

Divalent metal transporter 1

AGPS:

Alkyl glycerol phosphate synthase

FAR1:

Fatty acyl-CoA reductase 1

GNPAT:

Glyceronephosphate O-acyltransferase

AGPAT3:

1-Acylglycerol-3-phosphate O-acyltransferase 3

ER:

Endoplasmic reticulum

PEDS1:

Plasmanylethanolamine desaturase 1

Fe2+ :

Ferrous iron

Fe3+ :

Ferric iron

TF:

Transferrin

TFR1:

Transferrin receptor 1

STEAP3:

Six-transmembrane epithelial antigens of the prostate 3

FPN1:

Feroportin-1

NCOA4:

Nuclear receptor coactivator 4

HO-1:

Heme oxygenase-1

CO:

Carbon monoxide

Nrf2:

Nuclear factor erythroid 2-related factor 2

KEAP1:

Kelch-like ECH-associated protein 1

ARE:

Antioxidant response element

FTL:

The light chain of ferritin

FTH1:

The heavy chain of ferritin

FPN:

Ferroportin

HSPs:

Heat shock proteins

TRIM21:

Tripartite motif containing 21

HSPB1:

Heat shock protein beta-1

IREB-2:

Iron-responsive element-binding protein-2

CP:

Ceruloplasmin

LTF:

Lactose transferrin

PROM2:

Prominin-2

ATP:

Adenosine triphosphate

ISCs:

Iron-sulfur clusters

OXPHOS:

Oxidative phosphorylation

NOX4:

NADPH oxidase 4

TCA:

Tricarboxylic acid

MMP:

Mitochondrial membrane potential

ETC:

Electron transfer chain

Fer-1:

Ferrostatin-1

SLC3A2:

Solute carrier family 3 member 2

SLC7A11:

Catalytic subunit solute carrier family 7 member 11

Se:

Selenium

Sec:

Selenocysteine

SAT1:

Spermidine/spermine N1-acetyltransferase 1

ALOX-15:

Arachidonate lipoxygenase 15

ATF3:

Activating transcription factor 3

MVA:

Mevalonate

IPP:

Isopentenyl pyrophosphate

FSP1:

Ferroptosis suppressor protein 1

CoQ10:

Coenzyme Q10

NADPH:

Nicotinamide adenine dinucleotide phosphate

AIFM2:

Apoptosis-inducing factor mitochondrial 2

ESCRT:

Endosomal sorting complexes required for transport

PPARα:

Peroxisome proliferator-activated receptor α

MEG3:

Maternally-expressed gene 3

miR-214:

MicroRNA-214

GCH1:

GTP cyclohydrolase-1

BH4/BH2:

Tetrahydrobiopterin/dihydrobiopterin

RTAs:

Radical-trapping antioxidants

ox-LDLs:

Oxidized low-density lipoproteins

BACH1:

BTB and CNC homology 1

HUCB-MSCs:

Human umbilical cord blood-derived MSC exosomes

MLK3:

Mixed lineage kinase 3

CABG:

Coronary artery bypass grafting

MDA:

Malondialdehyde

ERS:

Endoplasmic reticulum stress

LVEF:

Left ventricular ejection fraction

OxPCs:

Oxidized phosphatidylcholines

USP22:

Ubiquitin-specific peptidase 22

LAD:

Left anterior descending coronary artery

USP7:

Ubiquitin-specific protease 7

ELAVL1:

Embryonic lethal-abnormal vision like protein 1: FOXC1: Forkhead box protein C1

H/R:

Hypoxia and reoxygenation

ERS:

Endoplasmic reticulum stress

DXZ:

Dexrazoxane

Lip-1:

Liproxstatin-1

HO-1:

Heme oxygenase-1

C3G:

Cyanidin-3-glucoside

CAD:

Coronary artery disease

DAMPs:

Damage-associated molecular patterns

References

  1. Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R et al (2007) European guidelines on cardiovascular disease prevention in clinical practice: executive summary: fourth joint task force of the european society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur Heart J 28(19):2375–2414

    Article  PubMed  Google Scholar 

  2. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ et al (2019) 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. Circulation 140(11):e563–e595

    PubMed  PubMed Central  Google Scholar 

  3. Eltzschig HK, Eckle T (2011) Ischemia and reperfusion–from mechanism to translation. Nat Med 17(11):1391–1401

    Article  CAS  PubMed  Google Scholar 

  4. Kist M, Vucic D (2021) Cell death pathways: intricate connections and disease implications. EMBO J 40(5):e106700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwabe RF, Luedde T (2018) Apoptosis and necroptosis in the liver: a matter of life and death. Nat Rev Gastroenterol Hepatol 15(12):738–752

    Article  PubMed  PubMed Central  Google Scholar 

  6. Koren E, Fuchs Y (2021) Modes of regulated cell death in cancer. Cancer Discov 11(2):245–265

    Article  CAS  PubMed  Google Scholar 

  7. Li N, Jiang W, Wang W, Xiong R, Wu X, Geng Q (2021) Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacol Res 166:105466

    Article  CAS  PubMed  Google Scholar 

  8. Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31(2):107–125

    Article  CAS  PubMed  Google Scholar 

  9. Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021) Ferroptosis: machinery and regulation. Autophagy 17(9):2054–2081

    Article  CAS  PubMed  Google Scholar 

  10. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu X, Li Y, Zhang S, Zhou X (2021) Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics 11(7):3052–3059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu D, Chen L (2015) Ferroptosis: a novel cell death form will be a promising therapy target for diseases. Acta Biochim Biophys Sin 47(10):857–859

    Article  CAS  PubMed  Google Scholar 

  13. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stockwell BR, Jiang X, Gu W (2020) Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol 30(6):478–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qiu Y, Cao Y, Cao W, Jia Y, Lu N (2020) The application of ferroptosis in diseases. Pharmacol Res 159:104919

    Article  CAS  PubMed  Google Scholar 

  16. Zheng J, Conrad M (2020) The metabolic underpinnings of ferroptosis. Cell Metab 32(6):920–937

    Article  CAS  PubMed  Google Scholar 

  17. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575(7784):693–698

    Article  CAS  PubMed  Google Scholar 

  18. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 113(34):E4966–E4975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xiao M, Zhong H, Xia L, Tao Y, Yin H (2017) Pathophysiology of mitochondrial lipid oxidation: role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radical Biol Med 111:316–327

    Article  CAS  Google Scholar 

  20. Tesfay L, Paul BT, Konstorum A, Deng Z, Cox AO, Lee J et al (2019) Stearoyl-CoA Desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Can Res 79(20):5355–5366

    Article  CAS  Google Scholar 

  21. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13(1):91–98

    Article  CAS  PubMed  Google Scholar 

  22. Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M et al (2015) Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol 10(7):1604–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuan H, Li X, Zhang X, Kang R, Tang D (2016) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 478(3):1338–1343

    Article  CAS  PubMed  Google Scholar 

  24. Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix CS et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90

    Article  CAS  PubMed  Google Scholar 

  25. Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8(3):237–248

    Article  CAS  PubMed  Google Scholar 

  26. Chu B, Kon N, Chen D, Li T, Liu T, Jiang L et al (2019) ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 21(5):579–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ou Y, Wang S-J, Li D, Chu B, Gu W (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA 113(44):E6806–E6812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zou Y, Henry WS, Ricq EL, Graham ET, Phadnis VV, Maretich P et al (2020) Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585(7826):603–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang D, Kroemer G (2020) Peroxisome: the new player in ferroptosis. Signal Transduct Target Ther 5(1):273

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bairwa G, Caza M, Horianopoulos L, Hu G, Kronstad J (2019) Role of clathrin-mediated endocytosis in the use of heme and hemoglobin by the fungal pathogen cryptococcus neoformans. Cell Microbiol 21(3):e12961

    Article  PubMed  Google Scholar 

  31. Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, Panieri E, Saso L, Rodrigo R (2021) Targeting ferroptosis against ischemia/reperfusion cardiac injury. Antioxidants 10(5):667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen X, Kang R, Kroemer G, Tang D (2021) Ferroptosis in infection, inflammation, and immunity. J Exp Med. https://doi.org/10.1084/jem.20210518

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X et al (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lakhal-Littleton S, Wolna M, Chung YJ, Christian HC, Heather LC, Brescia M et al (2016) An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. Elife. https://doi.org/10.7554/eLife.19804

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4):266–282

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liang D, Minikes AM, Jiang X (2022) Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell 82(12):2215–2227

    Article  CAS  PubMed  Google Scholar 

  37. Geng N, Shi BJ, Li SL, Zhong ZY, Li YC, Xua WL et al (2018) Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med Pharmacol Sci 22(12):3826–3836

    CAS  PubMed  Google Scholar 

  38. Ravingerová T, Kindernay L, Barteková M, Ferko M, Adameová A, Zohdi V et al (2020) The molecular mechanisms of iron metabolism and its role in cardiac dysfunction and cardioprotection. Int J Mol Sci 21(21):7889

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59(2):298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E et al (2014) Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 16(11):1069–1079

    Article  CAS  PubMed  Google Scholar 

  41. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509(7498):105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santana-Codina N, Gikandi A, Mancias JD (2021) The Role of NCOA4-mediated ferritinophagy in ferroptosis. Adv Exp Med Biol 1301:41–57

    Article  CAS  PubMed  Google Scholar 

  43. Santana-Codina N, Mancias JD (2018) The Role of NCOA4-mediated ferritinophagy in health and disease. Pharmaceuticals 11(4):114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo Y, Lu C, Hu K, Cai C, Wang W (2022) Ferroptosis in cardiovascular diseases: current status, challenges, and future perspectives. Biomolecules 12(3):390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fang X, Wang H, Han D, Xie E, Yang X, Wei J et al (2019) Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA 116(7):2672–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao Z, Zhang Z, Gu D, Li Y, Zhang K, Dong X et al (2022) Hemin mitigates contrast-induced nephropathy by inhibiting ferroptosis via HO-1/Nrf2/GPX4 pathway. Clin Exp Pharmacol Physiol. https://doi.org/10.1111/1440-1681.13673

    Article  PubMed  Google Scholar 

  47. Adedoyin O, Boddu R, Traylor A, Lever JM, Bolisetty S, George JF et al (2018) Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Renal Physiol 314(5):F702–F714

    Article  CAS  PubMed  Google Scholar 

  48. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R et al (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63(1):173–184

    Article  CAS  PubMed  Google Scholar 

  49. Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hou K, Shen J, Yan J, Zhai C, Zhang J, Pan J-A et al (2021) Loss of TRIM21 alleviates cardiotoxicity by suppressing ferroptosis induced by the chemotherapeutic agent doxorubicin. EBioMedicine 69:103456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu X, Wei Y, Hua H, Jing X, Zhu H, Xiao K et al (2022) Polyphenols sourced from thunb relieve intestinal injury via modulating ferroptosis in weanling piglets under oxidative stress. Antioxidants 11(5):996

    Article  Google Scholar 

  52. Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X et al (2015) HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 34(45):5617–5625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gammella E, Recalcati S, Rybinska I, Buratti P, Cairo G (2015) Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxid Med Cell Longev 2015:230182

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fang X, Cai Z, Wang H, Han D, Cheng Q, Zhang P et al (2020) Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res 127(4):486–501

    Article  CAS  PubMed  Google Scholar 

  55. Wang P, Cui Y, Ren Q, Yan B, Zhao Y, Yu P et al (2021) Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis 12(5):447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shang Y, Luo M, Yao F, Wang S, Yuan Z, Yang Y (2020) Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells. Cell Signal 72:109633

    Article  CAS  PubMed  Google Scholar 

  57. Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ et al (2019) Prominin2 drives ferroptosis resistance by stimulating iron export. Develop Cell 51(5):575–586

    Article  CAS  Google Scholar 

  58. Otasevic V, Vucetic M, Grigorov I, Martinovic V, Stancic A (2021) Ferroptosis in different pathological contexts seen through the eyes of mitochondria. Oxid Med Cell Longev 2021:5537330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chang L-C, Chiang S-K, Chen S-E, Yu Y-L, Chou R-H, Chang W-C (2018) Heme oxygenase-1 mediates BAY 11–7085 induced ferroptosis. Cancer Lett 416:124–137

    Article  CAS  PubMed  Google Scholar 

  60. Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB et al (2019) Role of Mitochondria in Ferroptosis. Mol Cell 73(2):354–363

    Article  CAS  PubMed  Google Scholar 

  61. Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K et al (2020) Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. https://doi.org/10.1172/jci.insight.132747

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jelinek A, Heyder L, Daude M, Plessner M, Krippner S, Grosse R et al (2018) Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radical Biol Med 117:45–57

    Article  CAS  Google Scholar 

  63. Gaschler MM, Hu F, Feng H, Linkermann A, Min W, Stockwell BR (2018) Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis. ACS Chem Biol 13(4):1013–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Song X, Liu J, Kuang F, Chen X, Zeh HJ, Kang R et al (2021) PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep 34(8):108767

    Article  CAS  PubMed  Google Scholar 

  65. Liu J, Kang R, Tang D (2021) Metabolic checkpoint of ferroptosis resistance. Mol Cell Oncol 8(3):1901558

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2020) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 66:89–100

    Article  CAS  PubMed  Google Scholar 

  67. Zheng K, Dong Y, Yang R, Liang Y, Wu H, He Z (2021) Regulation of ferroptosis by bioactive phytochemicals: implications for medical nutritional therapy. Pharmacol Res 168:105580

    Article  CAS  PubMed  Google Scholar 

  68. Feng H, Stockwell BR (2018) Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol 16(5):e2006203

    Article  PubMed  PubMed Central  Google Scholar 

  69. Conrad M, Proneth B (2019) Broken hearts: iron overload, ferroptosis and cardiomyopathy. Cell Res 29(4):263–264

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang L, Liu Y, Du T, Yang H, Lei L, Guo M et al (2020) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ 27(2):662–675

    Article  CAS  PubMed  Google Scholar 

  71. Chen H, Cao L, Han K, Zhang H, Cui J, Ma X et al (2022) Patulin disrupts SLC7A11-cystine-cysteine-GSH antioxidant system and promotes renal cell ferroptosis both in vitro and in vivo. Food Chem Toxicol an Int J Publish British Industrial Biol Res Association. 166:113255

    Article  CAS  Google Scholar 

  72. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K et al (2018) Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. https://doi.org/10.1016/j.cell.2017.11.048

    Article  PubMed  Google Scholar 

  73. Maiorino M, Conrad M, Ursini F (2018) GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxid Redox Signal 29(1):61–74

    Article  CAS  PubMed  Google Scholar 

  74. Liu W, Zhou Y, Duan W, Song J, Wei S, Xia S et al (2021) Glutathione peroxidase 4-dependent glutathione high-consumption drives acquired platinum chemoresistance in lung cancer-derived brain metastasis. Clin Transl Med 11(9):e517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang Y, Zhao Y, Wang H, Zhang C, Wang M, Yang Y et al (2020) Histone demethylase KDM3B protects against ferroptosis by upregulating SLC7A11. FEBS Open Bio 10(4):637–643

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ca C, Wang D, Yu Y, Zhao T, Min N, Wu Y et al (2021) Legumain promotes tubular ferroptosis by facilitating chaperone-mediated autophagy of GPX4 in AKI. Cell Death Dis 12(1):65

    Article  Google Scholar 

  77. Asperti M, Bellini S, Grillo E, Gryzik M, Cantamessa L, Ronca R et al (2021) H-ferritin suppression and pronounced mitochondrial respiration make Hepatocellular Carcinoma cells sensitive to RSL3-induced ferroptosis. Free Radical Biol Med 169:294–303

    Article  CAS  Google Scholar 

  78. Li S, He Y, Chen K, Sun J, Zhang L, He Y et al (2021) RSL3 drives ferroptosis through NF-B pathway activation and GPX4 depletion in Glioblastoma. Oxid Med Cell Longev 2021:2915019

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gao R, Kalathur RKR, Coto-Llerena M, Ercan C, Buechel D, Shuang S et al (2021) YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med 13(12):e14351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang L, Jiang L, Sun X, Li J, Wang N, Liu X et al (2022) DEHP induces ferroptosis in testes via p38α-lipid ROS circulation and destroys the BTB integrity. Food and Chem Toxicol an Int J Publish British Industrial Biol Res Association 164:113046

    Article  CAS  Google Scholar 

  81. Abdalkader M, Lampinen R, Kanninen KM, Malm TM, Liddell JR (2018) Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci 12:466

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M et al (2017) Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 6(8):e371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carpi-Santos R, Calaza KC (2018) Alterations in system x expression in the retina of Type 1 diabetic rats and the role of Nrf2. Mol Neurobiol 55(10):7941–7948

    Article  CAS  PubMed  Google Scholar 

  84. Chen D, Tavana O, Chu B, Erber L, Chen Y, Baer R et al (2017) NRF2 Is a Major Target of ARF in p53-Independent Tumor Suppression. Mol Cell 68(1):224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P et al (2018) BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 20(10):1181–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang Y, Koppula P, Gan B (2019) Regulation of H2A ubiquitination and SLC7A11 expression by BAP1 and PRC1. Cell Cycle 18(8):773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang C, Zhu L, Yuan W, Sun L, Xia Z, Zhang Z et al (2020) Diabetes aggravates myocardial ischaemia reperfusion injury via activating Nox2-related programmed cell death in an AMPK-dependent manner. J Cell Mol Med 24(12):6670–6679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Leu JIJ, Murphy ME, George DL (2019) Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53. Proc Natl Acad Sci USA 116(17):8390–8396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang X, Shi Z, Liu Q, Quan H, Cheng X (2019) Effects of coenzyme Q10 intervention on diabetic kidney disease: a systematic review and meta-analysis. Medicine 98(24):e15850

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hu S, Ma J, Su C, Chen Y, Shu Y, Qi Z et al (2021) Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis. Acta Biomater 135:567–581

    Article  CAS  PubMed  Google Scholar 

  91. Seibt TM, Proneth B, Conrad M (2019) Role of GPX4 in ferroptosis and its pharmacological implication. Free Radical Biol Med 133:144–152

    Article  CAS  Google Scholar 

  92. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180–1191

    Article  CAS  PubMed  Google Scholar 

  93. Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, Vaiana CA et al (2018) FINO initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14(5):507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hu Q, Zhang Y, Lou H, Ou Z, Liu J, Duan W et al (2021) GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis 12(7):706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E et al (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177(5):1262–1279

    Article  CAS  PubMed  Google Scholar 

  96. Yao X, Xie R, Cao Y, Tang J, Men Y, Peng H et al (2021) Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J Nanobiotechnol 19(1):311

    Article  CAS  Google Scholar 

  97. Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M et al (2019) Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA 116(8):2996–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhu S, Zhang Q, Sun X, Zeh HJ, Lotze MT, Kang R et al (2017) HSPA5 regulates ferroptotic cell death in cancer cells. Can Res 77(8):2064–2077

    Article  CAS  Google Scholar 

  99. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575(7784):688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dai E, Zhang W, Cong D, Kang R, Wang J, Tang D (2020) AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochem Biophys Res Commun 523(4):966–971

    Article  CAS  PubMed  Google Scholar 

  101. Dai E, Meng L, Kang R, Wang X, Tang D (2020) ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem Biophys Res Commun 522(2):415–421

    Article  CAS  PubMed  Google Scholar 

  102. Elguindy MM, Nakamaru-Ogiso E (2015) Apoptosis-inducing Factor (AIF) and Its family member protein, AMID, Are rotenone-sensitive NADH: ubiquinone oxidoreductases (NDH-2). J Biol Chem 290(34):20815–20826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Santoro MM (2020) The antioxidant role of non-mitochondrial CoQ10: mystery solved! Cell Metab 31(1):13–15

    Article  CAS  PubMed  Google Scholar 

  104. Venkatesh D, O’Brien NA, Zandkarimi F, Tong DR, Stokes ME, Dunn DE et al (2020) MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling. Genes Dev 34(7–8):526–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bai T, Liang R, Zhu R, Wang W, Zhou L, Sun Y (2020) MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol 235(7–8):5637–5648

    Article  CAS  PubMed  Google Scholar 

  106. Nguyen HP, Yi D, Lin F, Viscarra JA, Tabuchi C, Ngo K et al (2020) Aifm2, a NADH oxidase, supports robust glycolysis and is required for cold- and diet-induced thermogenesis. Mol Cell 77(3):600–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F et al (2020) GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Cent Sci 6(1):41–53

    Article  CAS  PubMed  Google Scholar 

  108. Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F et al (2020) Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 16(12):1351–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim HK, Han J (2020) Tetrahydrobiopterin in energy metabolism and metabolic diseases. Pharmacol Res 157:104827

    Article  CAS  PubMed  Google Scholar 

  110. Wang Y, Chen J, Li S, Zhang X, Guo Z, Hu J et al (2020) Exogenous spermine attenuates rat diabetic cardiomyopathy via suppressing ROS-p53 mediated downregulation of calcium-sensitive receptor. Redox Biol 32:101514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu P, Liu J, Wu Y, Xi W, Wei Y, Yuan Z et al (2020) Zinc supplementation protects against diabetic endothelial dysfunction via GTP cyclohydrolase 1 restoration. Biochem Biophys Res Commun 521(4):1049–1054

    Article  CAS  PubMed  Google Scholar 

  112. Abu-Taweel GM, Attia MF, Hussein J, Mekawi EM, Galal HM, Ahmed EI et al (2020) Curcumin nanoparticles have potential antioxidant effect and restore tetrahydrobiopterin levels in experimental diabetes. Biomed Pharmacotherapy Biomed Pharmacotherapie. 131:110688

    Article  CAS  Google Scholar 

  113. Kim HK, Ko TH, Song I-S, Jeong YJ, Heo HJ, Jeong SH et al (2020) BH4 activates CaMKK2 and rescues the cardiomyopathic phenotype in rodent models of diabetes. Life Sci Alliance 3(9):e201900619

    Article  PubMed  PubMed Central  Google Scholar 

  114. Carnicer R, Duglan D, Ziberna K, Recalde A, Reilly S, Simon JN et al (2021) BH4 increases nNOS activity and preserves left ventricular function in diabetes. Circ Res 128(5):585–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang J, Bolli R, Garry DJ, Marbán E, Menasché P, Zimmermann W-H et al (2021) Basic and translational research in cardiac repair and regeneration: JACC state-of-the-art review. J Am Coll Cardiol 78(21):2092–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN (2019) Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 99(4):1765–1817

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bulluck H, Rosmini S, Abdel-Gadir A, White SK, Bhuva AN, Treibel TA et al (2016) Residual myocardial iron following intramyocardial hemorrhage during the convalescent phase of reperfused ST-segment-elevation myocardial infarction and adverse left ventricular remodeling. Circ Cardiovascular Imaging. https://doi.org/10.1161/CIRCIMAGING.116.004940

    Article  PubMed  Google Scholar 

  118. Park T-J, Park JH, Lee GS, Lee J-Y, Shin JH, Kim MW et al (2019) Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death Dis 10(11):835

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hu H, Chen Y, Jing L, Zhai C, Shen L (2021) The link between ferroptosis and cardiovascular diseases: a novel target for treatment. Front Cardiovascular Med 8:710963

    Article  CAS  Google Scholar 

  120. Tang L-J, Luo X-J, Tu H, Chen H, Xiong X-M, Li N-S et al (2021) Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol 394(2):401–410

    Article  CAS  PubMed  Google Scholar 

  121. Liu B, Zhao C, Li H, Chen X, Ding Y, Xu S (2018) Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun 497(1):233–240

    Article  CAS  PubMed  Google Scholar 

  122. Chen X, Xu S, Zhao C, Liu B (2019) Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun 516(1):37–43

    Article  CAS  PubMed  Google Scholar 

  123. Nishizawa H, Matsumoto M, Shindo T, Saigusa D, Kato H, Suzuki K et al (2020) Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. J Biol Chem 295(1):69–82

    Article  CAS  PubMed  Google Scholar 

  124. Song Y, Wang B, Zhu X, Hu J, Sun J, Xuan J et al (2021) Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol Toxicol 37(1):51–64

    Article  CAS  PubMed  Google Scholar 

  125. Qin Y, Qiao Y, Wang D, Tang C, Yan G (2021) Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications. Biomed Pharmacotherapy Biomed Pharmacotherapie 141:111872

    Article  CAS  Google Scholar 

  126. Tang S, Wang Y, Ma T, Lu S, Huang K, Li Q et al (2020) MiR-30d inhibits cardiomyocytes autophagy promoting ferroptosis after myocardial infarction. Panminerva Med. https://doi.org/10.23736/S0031-0808.20.03979-8

    Article  PubMed  Google Scholar 

  127. Baba Y, Higa JK, Shimada BK, Horiuchi KM, Suhara T, Kobayashi M et al (2018) Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol 314(3):H659–H668

    Article  PubMed  Google Scholar 

  128. Wang K, Gan T-Y, Li N, Liu C-Y, Zhou L-Y, Gao J-N et al (2017) Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ 24(6):1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zheng H, Shi L, Tong C, Liu Y, Hou M (2021) circSnx12 Is Involved in Ferroptosis During Heart Failure by Targeting miR-224-5p. Front Cardiovascular Med 8:656093

    Article  CAS  Google Scholar 

  130. Wang J, Deng B, Liu Q, Huang Y, Chen W, Li J et al (2020) Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis 11(7):574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Williams RE, Zweier JL, Flaherty JT (1991) Treatment with deferoxamine during ischemia improves functional and metabolic recovery and reduces reperfusion-induced oxygen radical generation in rabbit hearts. Circulation 83(3):1006–1014

    Article  CAS  PubMed  Google Scholar 

  132. Paraskevaidis IA, Iliodromitis EK, Vlahakos D, Tsiapras DP, Nikolaidis A, Marathias A et al (2005) Deferoxamine infusion during coronary artery bypass grafting ameliorates lipid peroxidation and protects the myocardium against reperfusion injury: immediate and long-term significance. Eur Heart J 26(3):263–270

    Article  CAS  PubMed  Google Scholar 

  133. Stamenkovic A, O’Hara KA, Nelson DC, Maddaford TG, Edel AL, Maddaford G et al (2021) Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 320(3):H1170–H1184

    Article  CAS  PubMed  Google Scholar 

  134. Ma S, Sun L, Wu W, Wu J, Sun Z, Ren J (2020) USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-p53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death. Front Physiol 11:551318

    Article  PubMed  PubMed Central  Google Scholar 

  135. Luo E-F, Li H-X, Qin Y-H, Qiao Y, Yan G-L, Yao Y-Y et al (2021) Role of ferroptosis in the process of diabetes-induced endothelial dysfunction. World J Diabetes 12(2):124–137

    Article  PubMed  PubMed Central  Google Scholar 

  136. Chen H-Y, Xiao Z-Z, Ling X, Xu R-N, Zhu P, Zheng S-Y (2021) ELAVL1 is transcriptionally activated by FOXC1 and promotes ferroptosis in myocardial ischemia/reperfusion injury by regulating autophagy. Mol Med 27(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tang L-J, Zhou Y-J, Xiong X-M, Li N-S, Zhang J-J, Luo X-J et al (2021) Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radical Biol Med 162:339–352

    Article  CAS  Google Scholar 

  138. Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L et al (2020) Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol 22(2):225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li W, Li W, Leng Y, Xiong Y, Xia Z (2020) Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol 39(2):210–225

    Article  CAS  PubMed  Google Scholar 

  140. Ni R, Cao T, Xiong S, Ma J, Fan G-C, Lacefield JC et al (2016) Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radical Biol Med 90:12–23

    Article  CAS  Google Scholar 

  141. Zhao Z, Wu J, Xu H, Zhou C, Han B, Zhu H et al (2020) XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury. Cell Death Dis 11(8):629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Feng Y, Madungwe NB, Imam Aliagan AD, Tombo N, Bopassa JC (2019) Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem Biophys Res Commun 520(3):606–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Xie Y, Song X, Sun X, Huang J, Zhong M, Lotze MT et al (2016) Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem Biophys Res Commun 473(4):775–780

    Article  CAS  PubMed  Google Scholar 

  144. Li Q, Li Q-Q, Jia J-N, Sun Q-Y, Zhou H-H, Jin W-L et al (2019) Baicalein exerts neuroprotective effects in FeCl-induced posttraumatic epileptic seizures suppressing ferroptosis. Front Pharmacol 10:638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fan Z, Cai L, Wang S, Wang J, Chen B (2021) Baicalin Prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis. Front Pharmacol 12:628988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lv Z, Fe W, Zhang X, Zhang X, Zhang J, Liu R (2021) Etomidate attenuates the ferroptosis in myocardial ischemia/reperfusion rat model via Nrf2/HO-1 pathway. Shock 56(3):440–449

    CAS  PubMed  Google Scholar 

  147. Shan X, Lv Z-Y, Yin M-J, Chen J, Wang J, Wu Q-N (2021) The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis. Oxid Med Cell Longev 2021:8880141

    Article  PubMed  PubMed Central  Google Scholar 

  148. Tu H, Zhou Y-J, Tang L-J, Xiong X-M, Zhang X-J, Ali Sheikh MS et al (2021) Combination of ponatinib with deferoxamine synergistically mitigates ischemic heart injury via simultaneous prevention of necroptosis and ferroptosis. Eur J Pharmacol 898:173999

    Article  CAS  PubMed  Google Scholar 

  149. Tan Z, Liu H, Song X, Ling Y, He S, Yan Y et al (2019) Honokiol post-treatment ameliorates myocardial ischemia/reperfusion injury by enhancing autophagic flux and reducing intracellular ROS production. Chem Biol Interact 307:82–90

    Article  CAS  PubMed  Google Scholar 

  150. Li T, Tan Y, Ouyang S, He J, Liu L (2022) Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene 808:145968

    Article  CAS  PubMed  Google Scholar 

  151. Zhou X-R, Ru X-C, Xiao C, Pan J, Lou Y-Y, Tang L-H et al (2021) Sestrin2 is involved in the Nrf2-regulated antioxidative signaling pathway in luteolin-induced prevention of the diabetic rat heart from ischemia/reperfusion injury. Food Funct 12(8):3562–3571

    Article  CAS  PubMed  Google Scholar 

  152. Li J-Y, Yao Y-M, Tian Y-P (2021) Ferroptosis: a trigger of proinflammatory state progression to immunogenicity in necroinflammatory disease. Front Immunol 12:701163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Li J, Cao F, Yin H-L, Huang Z-J, Lin Z-T, Mao N et al (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2):88

    Article  PubMed  PubMed Central  Google Scholar 

  154. Yan B, Ai Y, Sun Q, Ma Y, Cao Y, Wang J et al (2021) Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol Cell 81(2):355–369

    Article  CAS  PubMed  Google Scholar 

  155. Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ et al (2016) Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol 12(7):497–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H et al (2020) Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett 483:127–136

    Article  CAS  PubMed  Google Scholar 

  157. Chan W, Taylor AJ, Ellims AH, Lefkovits L, Wong C, Kingwell BA et al (2012) Effect of iron chelation on myocardial infarct size and oxidative stress in ST-elevation-myocardial infarction. Circ Cardiovasc Interv 5(2):270–278

    Article  CAS  PubMed  Google Scholar 

  158. Howland MA (1996) Risks of parenteral deferoxamine for acute iron poisoning. J Toxicol Clin Toxicol 34(5):491–497

    Article  CAS  PubMed  Google Scholar 

  159. Donfrancesco A, Deb G, Dominici C, Pileggi D, Castello MA, Helson L (1990) Effects of a single course of deferoxamine in neuroblastoma patients. Can Res 50(16):4929–4930

    CAS  Google Scholar 

  160. Ramos C, Brito R, González-Montero J, Valls N, Gormaz JG, Prieto JC et al (2017) Effects of a novel ascorbate-based protocol on infarct size and ventricle function in acute myocardial infarction patients undergoing percutaneous coronary angioplasty. Archives Med Sci AMS 13(3):558–567

    Article  CAS  Google Scholar 

  161. Valls N, Gormaz JG, Aguayo R, González J, Brito R, Hasson D et al (2016) Amelioration of persistent left ventricular function impairment through increased plasma ascorbate levels following myocardial infarction. Redox Report Commun Free Radical Res 21(2):75–83

    CAS  Google Scholar 

  162. Gasparetto C, Malinverno A, Culacciati D, Gritti D, Prosperini PG, Specchia G et al (2005) Antioxidant vitamins reduce oxidative stress and ventricular remodeling in patients with acute myocardial infarction. Int J Immunopathol Pharmacol 18(3):487–496

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81870265, 82171808) and the China Young and Middle-aged Clinical Research Foundation (Grant No. 2017CCA-VG045), Foundation,2017CCA-VG045,2017CCA-VG045,2017CCA-VG045,2017CCA-VG045,2017CCA-VG045,2017CCA-VG045,2017CCA-VG045.

Author information

Authors and Affiliations

Authors

Contributions

XJH: writing—original draft preparation. XJH, JZ, JL and XJ: writing—review and editing. CXG: supervision. HXW, FHD and CXG: project administration. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xiangjun Zeng or Caixia Guo.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or other competing interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Zhang, J., Liu, J. et al. Targeting ferroptosis: a novel insight against myocardial infarction and ischemia–reperfusion injuries. Apoptosis 28, 108–123 (2023). https://doi.org/10.1007/s10495-022-01785-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01785-2

Keywords

Navigation