Skip to main content

Advertisement

Log in

Cuproptosis identifies respiratory subtype of renal cancer that confers favorable prognosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cuproptosis is a newly discovered cell death induced by excessive copper in mitochondria distinct from any known forms of apoptosis. Role of cuproptosis has not been well-reported in cancer, especially in clear-cell renal cell carcinoma (ccRCC). We comprehensively interrogated cuproptotic gene signature in ccRCC by reproducing multi-omics datasets and found cuproptosis was decreased in ccRCC compared with normal kidney. Cuproptosis identified a subgroup with significantly better prognosis. Functional annotation supported increased tricarboxylic acid cycle activity and decreased hypoxia signaling corroborated by metabolomics. Cuproptotic tumors showed decreased angiogenesis but were sensitive to Sunitinib and Sorafenib. Cuproptotic level in ccRCC cell lines showed robust negative correlation with copper ionophore Elesclomol. All findings support a respiratory subtype of ccRCC identified by cuproptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data from the current study was retrieved from public genomic datasets and no new dataset was generated.

Abbreviations

ccRCC:

Clear cell renal cell carcinoma

CDF:

The cumulative distribution function

CNV:

Copy number variation

CORE:

Consumption and release

DepMap:

Dependency map portal

GDSC:

Genomics of drug sensitivity in cancer database

GISTIC:

The genomic identification of significant targets in cancer

GSE:

Gene set enrichment

GSEA:

Gene set enrichment analysis

GSVA:

Gene set variation analysis

ICIs:

Immune checkpoints inhibitors

IC50:

The half maximal inhibitory concentration

IHC:

Immunohistochemical

NES:

Normalized enrichment score

OS:

Overall survival

ROC:

The receiver operating characteristic

ssGSEA:

Single sample gene set enrichment analysis

TCA cycle:

Tricarboxylic acid cycle

TCGA-KIRC:

The cancer genome atlas of kidney renal clear cell carcinoma

TILs:

Tumor infiltrating lymphocytes

TKIs:

Tyrosine kinase inhibitors

TPM:

Transcripts per kilobase million

References

  1. Sung H et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30

    Article  PubMed  Google Scholar 

  3. Gupta K et al (2008) Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev 34(3):193–205

    Article  PubMed  Google Scholar 

  4. Powles T, ESMO Guidelines Committee (2021) Recent eUpdate to the ESMO Clinical Practice Guidelines on renal cell carcinoma on cabozantinib and nivolumab for first-line clear cell renal cancer: Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 32(3):422–423

    Article  CAS  PubMed  Google Scholar 

  5. Braun DA et al (2021) Beyond conventional immune-checkpoint inhibition - novel immunotherapies for renal cell carcinoma. Nat Rev Clin Oncol 18(4):199–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Labbé S, Thiele DJ (1999) Pipes and wiring: the regulation of copper uptake and distribution in yeast. Trends Microbiol 7(12):500–505

    Article  PubMed  Google Scholar 

  7. Aggett PJ, Fairweather-Tait S (1998) Adaptation to high and low copper intakes: its relevance to estimated safe and adequate daily dietary intakes. Am J Clin Nutr 67(5 Suppl):1061S-1063S

    Article  CAS  PubMed  Google Scholar 

  8. Tsvetkov P et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586):1254–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang D, Chen X, Kroemer G (2022) Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res 32(5):417–418

    Article  PubMed  Google Scholar 

  10. Gatto F, Nookaew I, Nielsen J (2014) Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. Proc Natl Acad Sci USA 111(9):E866–E875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Razafinjatovo C et al (2016) Characterization of VHL missense mutations in sporadic clear cell renal cell carcinoma: hotspots, affected binding domains, functional impact on pVHL and therapeutic relevance. BMC Cancer 16:638

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kaelin WG Jr (2008) The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8(11):865–873

    Article  CAS  PubMed  Google Scholar 

  13. Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123(9):3664–3671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hakimi AA et al (2016) An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 29(1):104–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liberti MV, Locasale JW (2016) The warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hatakeyama H et al (2018) Investigation of metabolomic changes in sunitinib-resistant human renal carcinoma 786-O cells by capillary electrophoresis-time of flight mass spectrometry. Biol Pharm Bull 41(4):619–627

    Article  CAS  PubMed  Google Scholar 

  17. Sato T et al (2019) Value of global metabolomics in association with diagnosis and clinicopathological factors of renal cell carcinoma. Int J Cancer 145(2):484–493

    Article  CAS  PubMed  Google Scholar 

  18. Nam H et al (2021) The TGF-beta/HDAC7 axis suppresses TCA cycle metabolism in renal cancer. JCI Insight. https://doi.org/10.1172/jci.insight.148438

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qu Y et al (2022) A proteogenomic analysis of clear cell renal cell carcinoma in a Chinese population. Nat Commun 13(1):2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jain M et al (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336(6084):1040–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Geeleher P, Cox N, Huang RS (2014) pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE 9(9):e107468

    Article  PubMed  PubMed Central  Google Scholar 

  24. Uhlén M et al (2015) Tissue-based map of the human proteome. Science. https://doi.org/10.1126/science.1260419

    Article  PubMed  Google Scholar 

  25. Liu J et al (2018) Loss of SETD2 induces a metabolic switch in renal cell carcinoma cell lines toward enhanced oxidative phosphorylation. J Proteome Res. https://doi.org/10.1021/acs.jproteome.8b00628

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li L et al (2019) Integrated genomic and proteomic analyses reveal novel mechanisms of the methyltransferase SETD2 in renal cell carcinoma development. Mol Cell Proteomics 18(3):437–447

    Article  PubMed  Google Scholar 

  27. Ljungberg B et al (2022) European Association of Urology Guidelines on Renal Cell Carcinoma: the 2022 update. Eur Urol. https://doi.org/10.1016/j.eururo.2022.03.006

    Article  PubMed  Google Scholar 

  28. Jones AT et al (2019) Efficacy of Dual inhibition of glycolysis and glutaminolysis for therapy of renal lesions in Tsc2+/− mice. Neoplasia 21(2):230–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang S et al (2021) Comprehensive analysis of ferroptosis regulators with regard to PD-L1 and immune infiltration in clear cell renal cell carcinoma. Front Cell Dev Biol 9:676142

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dixon SJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bacigalupa ZA, Rathmell WK (2020) Beyond glycolysis: hypoxia signaling as a master regulator of alternative metabolic pathways and the implications in clear cell renal cell carcinoma. Cancer Lett 489:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu Y et al (2022) Genomic profiling and response to immune checkpoint inhibition plus tyrosine kinase inhibition in FH-deficient renal cell carcinoma. Eur Urol. https://doi.org/10.1016/j.eururo.2022.05.029

    Article  PubMed  Google Scholar 

  33. Brewer GJ (2016) Copper control as an antiangiogenic anticancer therapy: lessons from treating Wilson’s disease. Exp Biol Med 226(7):665–673

    Article  Google Scholar 

  34. Redman BG et al (2003) Phase II trial of tetrathiomolybdate in patients with advanced kidney cancer. Clin Cancer Res 9(5):1666–1672

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was sponsored in part by National Natural Science Foundation of China (Grant Nos. 81874123 and 81772709) and by Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU).

Author information

Authors and Affiliations

Authors

Contributions

CF, YL, XZ and YL: carried out in silico analysis. KL, LT and CF: participated in the study design. CF, HJ and HW: retrieved data. CF and KL: drafted the manuscript. LT: undertook revision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaohua Zhang, Hui Wen or Chenchen Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Ethical approval

Not available.

Consent to participate

Not available.

Consent for publication

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Tan, L., Li, Y. et al. Cuproptosis identifies respiratory subtype of renal cancer that confers favorable prognosis. Apoptosis 27, 1004–1014 (2022). https://doi.org/10.1007/s10495-022-01769-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01769-2

Keywords

Navigation