Skip to main content
Log in

DMFC (3,5-dimethyl-7H-furo[3,2-g]chromen-7-one) regulates Bim to trigger Bax and Bak activation to suppress drug-resistant human hepatoma

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

3,5-Dimethyl-7H-furo[3,2-g]chromen-7-one (DMFC) is a coumarin derivative with anti-cancer activity against human hepatoma cells, but the mechanisms underlying DMFC function in cancer suppression is unknown. In this study, we aimed at elucidating the molecular mechanisms underlying DMFC anti-cancer activity and determining whether DMFC is effective in suppression of drug-resistant human hepatocellular carcinoma. We show here that DMFC effectively suppresses both the parent and the multidrug-resistant hepatoma cell growth in vitro and DMFC suppresses hepatoma cell growth at least in part through inducing tumor cell apoptosis. In the molecular level, we observed that DMFC treatment decreases Bcl-2 level by a post-transcriptional mechanism and activates Bim transcription to increase Bim mRNA and protein level in hepatoma cells. Furthermore, co-immunoprecipitation studies revealed that DMFC-induced Bim interrupts interactions between Bcl-2 and Bax and between Mcl-1 and Bak, resulting in dissociation of Bax from Bcl-2 and Bak from Mcl-1 and subsequent activation of both Bax and Bak. Activation of Bax and Bak leads to mitochondrial outer membrane permeabilization and cytochrome c release. Consistent with its potent apoptosis-inducing activity, DMFC exhibited potent activity against the multidrug-resistant hepatoma xenograft growth in vivo. Therefore, we determine that DMFC suppresses hepatoma growth through decreasing Bcl-2 and increasing Bim to induce tumor cell apoptosis and hold great promise for further development as a therapeutic agent to treat chemoresistant hepatoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365:1118–1127

    Article  CAS  PubMed  Google Scholar 

  2. Lise M, Pilati P, Da PP, Mocellin S, Nitti D, Corazzino S (2003) Treatment options for liver metastases from colorectal cancer. J Exp Clin Cancer Res 22:149–156

    CAS  PubMed  Google Scholar 

  3. van den Hoven AF, Lam MG, Jernigan S, van den Bosch MA, Buckner GD (2015) Innovation in catheter design for intra-arterial liver cancer treatments results in favorable particle–fluid dynamics. J Exp Clin Cancer Res 34:74

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang CK, Lin YF, Tai CJ et al (2015) Integrated treatment of aqueous extract of Solanum nigrum-potentiated cisplatin-and doxorubicin-induced cytotoxicity in human hepatocellular carcinoma cells. Evid Based Complement Alternat Med 2015:675270

    PubMed  PubMed Central  Google Scholar 

  5. Wang Z, Li J, Ji Y, An P, Zhang S, Li Z (2013) Traditional herbal medicine: a review of potential of inhibitory hepatocellular carcinoma in basic research and clinical trial. Evid Based Complement Alternat Med 2013:268963–268969

    PubMed  PubMed Central  Google Scholar 

  6. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Danial NN (2007) BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 13:7254–7263

    Article  CAS  PubMed  Google Scholar 

  8. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    Article  CAS  PubMed  Google Scholar 

  9. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  PubMed  Google Scholar 

  10. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ (1996) BID: a novel BH3 domain-only death agonist. Genes Dev 10:2859–2869

    Article  CAS  PubMed  Google Scholar 

  12. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  CAS  PubMed  Google Scholar 

  13. Liu X, Dai S, Zhu Y, Marrack P, Kappler JW (2003) The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity 19:341–352

    Article  CAS  PubMed  Google Scholar 

  14. Petros AM, Nettesheim DG, Wang Y et al (2000) Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci 9:2528–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reed JC, Zha H, Aime-Sempe C, Takayama S, Wang HG (1996) Structure–function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv Exp Med Biol 406:99–112

    Article  CAS  PubMed  Google Scholar 

  16. Hamacher-Brady A, Brady NR (2015) Bax/Bak-dependent, Drp1-independent targeting of XIAP into inner-mitochondrial compartments counteracts Smac-dependent effector caspase activation. J Biol Chem 290:22005–22018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zerp SF, Stoter TR, Hoebers FJ et al (2015) Targeting anti-apoptotic Bcl-2 by AT-101 to increase radiation efficacy: data from in vitro and clinical pharmacokinetic studies in head and neck cancer. Radiat Oncol 10:158

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li X, Zeng X, Sun J et al (2014) Imperatorin induces Mcl-1 degradation to cooperatively trigger Bax translocation and Bak activation to suppress drug-resistant human hepatoma. Cancer Lett 348:146–155

    Article  CAS  PubMed  Google Scholar 

  19. Sun JG, Chen CY, Luo KW et al (2011) 3,5-Dimethyl-H-furo[3,2-g]chromen-7-one as a potential anticancer drug by inducing p53-dependent apoptosis in human hepatoma HepG2 cells. Chemotherapy 57:162–172

    Article  CAS  PubMed  Google Scholar 

  20. Cuvillier O, Rosenthal DS, Smulson ME, Spiegel S (1998) Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes. J Biol Chem 273:2910–2916

    Article  CAS  PubMed  Google Scholar 

  21. Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13:1378–1386

    Article  CAS  PubMed  Google Scholar 

  22. Lucken-Ardjomande S, Martinou JC (2005) Newcomers in the process of mitochondrial permeabilization. J Cell Sci 118:473–483

    Article  CAS  PubMed  Google Scholar 

  23. Chen S, Dai Y, Harada H, Dent P, Grant S (2007) Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res 67:782–791

    Article  CAS  PubMed  Google Scholar 

  24. Cuconati A, Mukherjee C, Perez D, White E (2003) DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev 17:2922–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Antonsson B, Conti F, Ciavatta A et al (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372

    Article  CAS  PubMed  Google Scholar 

  26. Chen L, Willis SN, Wei A et al (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    Article  CAS  PubMed  Google Scholar 

  27. van Delft MF, Wei AH, Mason KD et al (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10:389–399

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cai J, Yang J, Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366:139–149

    Article  CAS  PubMed  Google Scholar 

  29. Itchaki G, Brown JR (2016) The potential of venetoclax (ABT-199) in chronic lymphocytic leukemia. Ther Adv Hematol 7(5):270–287

    Article  PubMed  PubMed Central  Google Scholar 

  30. Khaw S, Merino D, Anderson M, Glaser S, Bouillet P, Roberts A et al (2014) Both leukaemic and normal peripheral B lymphoid cells are highly sensitive to the selective pharmacological inhibition of prosurvival Bcl-2 with ABT-199. Leukemia 28:1207–1215

    Article  CAS  PubMed  Google Scholar 

  31. Vogler M, Butterworth M, Majid A, Walewska R, Sun X, Dyer M et al (2009) Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood 113:4403–4413

    Article  CAS  PubMed  Google Scholar 

  32. Vogler M, Dinsdale D, Dyer M, Cohen G (2013) ABT-199 selectively inhibits BCL2 but not BCL2L1 and efficiently induces apoptosis of chronic lymphocytic leukaemic cells but not platelets. Br J Haematol 163:139–142

    Article  CAS  PubMed  Google Scholar 

  33. Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery. Drug Discov Today 8(19):876–877

    Article  PubMed  Google Scholar 

  34. Sarosiek KA, Chi X, Bachman JA et al (2013) BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol Cell 51:751–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by National Natural Science Foundation of China (No. 31570811) Natural Science Foundation of Zhejiang Province (LY15C020001) and Si-Yuan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiyan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Jun Xiang, Zhe Wang and Qianqia Liu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, J., Wang, Z., Liu, Q. et al. DMFC (3,5-dimethyl-7H-furo[3,2-g]chromen-7-one) regulates Bim to trigger Bax and Bak activation to suppress drug-resistant human hepatoma. Apoptosis 22, 381–392 (2017). https://doi.org/10.1007/s10495-016-1331-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1331-5

Keywords

Navigation