Skip to main content

Advertisement

Log in

Identification of cytotoxic mediators and their putative role in the signaling pathways during docosahexaenoic acid (DHA)-induced apoptosis of cancer cells

  • Published:
Apoptosis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Docosahexaenoic acid (DHA), an important w-3 fatty acid exhibits differential behavior in cancer cells of neural origin when compared to that in normal healthy astrocytes. Treatment of C6 glioma and SH-SY5Y cell lines and primary astrocytes, representing the neoplastic cells and normal healthy cells respectively, with 100 µM DHA for 24 h showed significant loss of cell viability in the both the cancer cells as determined by MTT assay, whereas the primary astrocytes cultures were unaffected. Such loss of cell viability was due to apoptosis as confirmed by TUNEL staining and caspase-3 activation in cancer cells. Proteomic approach, employing 2-dimensional gel electrophoresis (2DE), difference gel electrophoresis (DIGE), and MALDI-TOF-TOF analysis identified six proteins which unlike in the astrocytes, were differently altered in the cancer cells upon exposure to DHA, suggesting their putative contribution in causing apoptosis in these cells. Of these, annexin A2, calumenin, pyruvate kinase M2 isoform, 14-3-3ζ were downregulated while aldo keto reductase-1B8 (AKR1B8) and glutathione–S-transferase P1 subunit (GSTP1) showed upregulation by DHA in the cancer cells. siRNA-mediated knockdown of AKR1B8 and GSTP1 inhibit DHA-induced apoptosis confirming their role in apoptotic process. Furthermore, western blot analysis identified upregulation of PPARα and the MAP kinases, JNK and p38 as well as increased ROS production selectively in the cell lines. Results suggest that DHA selectively induces apoptosis in the neural cell lines by regulating the expression of the above proteins to activate multiple apoptotic pathways which in association with excess ROS and activated MAPKs promote cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DHA:

Docosahexaenoic acid

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

2DE:

2-Dimensional gel electrophoresis

DIGE:

Difference gel electrophoresis

AKR1B8:

Aldo keto reductase-1B8

GSTP1:

Glutathione-S-transferase P1 subunit

PPAR:

Peroxisome proliferator-activated receptors

JNK:

c-Jun NH2-terminal kinase

ROS:

Reactive oxygen species

PKM2:

Pyruvate kinase-M2 isoform

ER:

Endoplasmic reticulum

14-3-3ζ:

14-3-3 Zeta isoform

ERK1/2:

Extracellular signal-regulated kinases 1 and 2

pERK:

Phosphorylated ERK

p-JNK:

Phosphorylated JNK

p-p38:

Phosphorylated p38

pCREB:

cAMP response element-binding protein

ANXA2:

Annexin A2

DMEM:

Dulbecco’s modified eagles medium

FBS:

Fetal bovine serum

DMSO:

Dimethyl sulfoxide

SDS–PAGE:

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis

DTT:

Dithiothreitol

References

  1. Gharami K, Das M, Das S (2015) Essential role of docosahexaenoic acid towards development of a smarter brain. Neurochem Int 89:51–62

    Article  CAS  PubMed  Google Scholar 

  2. Joardar A, Sen AK, Das S (2006) Docosahexaenoic acid facilitates cell maturation and beta-adrenergic transmission in astrocytes. J Lipid Res 47:571–581

    Article  CAS  PubMed  Google Scholar 

  3. Kim HY (2007) Novel metabolism of docosahexaenoic acid in neural cells. J Biol Chem 282:18661–18665

    Article  CAS  PubMed  Google Scholar 

  4. Begum G, Kintner D, Liu Y, Cramer SW, Sun D (2012) DHA inhibits ER Ca2+ release and ER stress in astrocytes following in vitro ischemia. J Neurochem 20:622–630

    Article  Google Scholar 

  5. Chang CY, Kuan YH, Li JR, Chen WY, Ou YC, Pan HC, Liao SL, Raung SL, Chang CJ, Chen CJ (2013) Docosahexaenoic acid reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. J Nutr Biochem 24:2127–2137

    Article  CAS  PubMed  Google Scholar 

  6. Casañas-Sánchez V, Pérez JA, Fabelo N, Herrera-Herrera AV, Fernández C, Marín R, González-Montelongo MC, Díaz M (2014) Addition of docosahexaenoic acid, but not arachidonic acid, activates glutathione and thioredoxin antioxidant systems in murine hippocampal HT22 cells: potential implications in neuroprotection. J Neurochem 131:470–483

    Article  PubMed  Google Scholar 

  7. Kobayashi N, Barnard RJ, Henning SM, Elashoff D, Reddy ST, Cohen P, Leung P, Hong-Gonzalez J, Freedland SJ, Said J, Gui D, Seeram NP, Popoviciu LM, Bagga D, Heber D, Glaspy JA, Aronson WJ (2006) Effect of altering dietary omega-6/omega-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E2. Clin Cancer Res 12:4662–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martin DD, Robbins ME, Spector AA, Wen BC, Hussey DH (1996) The fatty acid composition of human gliomas differs from that found in nonmalignant brain tissue. Lipids 31:1283–1288

    Article  CAS  PubMed  Google Scholar 

  9. Reynolds LM, Dalton CF, Reynolds GP (2001) Phospholipid fatty acids and neurotoxicity in human neuroblastoma SH-SY5Y cells. Neurosci Lett 309:193–196

    Article  CAS  PubMed  Google Scholar 

  10. Kokoglu E, Tuter Y, Yazici Z, Sandikci KS, Sonmez H, Ulakoglu EZ, Ozyurt E (1998) Profiles of the fatty acids in the plasma membrane of human brain tumors. Cancer Biochem Biophys 16:301–312

    CAS  PubMed  Google Scholar 

  11. Kang KS, Wang P, Yamabe N, Fukui M, Jay T, Zhu BT (2010) Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation. PLoS One 5:e10296, 1–13

    Article  Google Scholar 

  12. Sun H, Hu Y, Gu Z, Owens RT, Chen YQ, Edwards IJ (2011) Omega-3 fatty acids induce apoptosis in human breast cancer cells and mouse mammary tissue through syndecan-1 inhibition of the MEK-Erk pathway. Carcinogenesis 32:1518–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fasano E, Serini S, Piccioni E, Toesca A, Monego G, Cittadini AR, Ranelletti FO, Calviello G (2012) DHA induces apoptosis by altering the expression and cellular location of GRP78 in colon cancer cell lines. Biochim Biophys Acta 1822:1762–1772

    Article  CAS  PubMed  Google Scholar 

  14. Das UN, Huang YS, Begin ME, Ells G, Horrobin DF (1987) Uptake and distribution of cis-unsaturated fatty acids and their effect on free radical generation in normal and tumor cells in vitro. Free Radic Biol Med 3:9–14

    Article  CAS  PubMed  Google Scholar 

  15. Jeong S, Jing K, Kim N, Shin S, Kim S, Song KS, Heo JY, Park JH, Seo KS, Han J, Wu T, Kweon GR, Park SK, Park JI, Lim K (2014) Docosahexaenoic acid-induced apoptosis is mediated by activation of mitogen-activated protein kinases in human cancer cells. BMC Cancer 14:481

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ding WQ, Vaught JL, Yamauchi H, Lind SE (2004) Differential sensitivity of cancer cells to docosahexaenoic acid-induced cytotoxicity: the potential importance of down-regulation of superoxide dismutase 1 expression. Mol Cancer Ther 3:1109–1117

    Article  CAS  PubMed  Google Scholar 

  17. Maiti AK (2012) Reactive oxygen species reduction is a key underlying mechanism of drug resistance in cancer chemotherapy. Chemotherapy 1:104

    Google Scholar 

  18. Merendino N, Costantini L, Manzi L, Molinari R, D’Eliseo D, Velotti F (2013) Dietary ω–3 polyunsaturated fatty acid DHA: a potential adjuvant in the treatment of cancer. Biomed Res Int 2013:310186

    Article  PubMed  PubMed Central  Google Scholar 

  19. Harvey KA, Xu Z, Saaddatzadeh MR, Wang H, Pollok K, Cohen-Gadol AA, Siddiqui RA (2015) Enhanced anticancer properties of lomustine in conjunction with docosahexaenoic acid in glioblastoma cell lines. J Neurosurg 122:547–556

    Article  PubMed  Google Scholar 

  20. D’Alessandro A, D’Amici GM, Timperio AM, Merendino N, Zolla L (2011) Docosohaexanoic acid-supplemented PACA44 cell lines and over-activation of Krebs cycle: an integrated proteomic, metabolomic and interactomic overview. J Proteomics 74:2138–2158

    Article  PubMed  Google Scholar 

  21. Gleissman H, Yang R, Martinod K, Lindskog M, Serhan CN, Johnsen JI, Kogner P (2010) Docosahexaenoic acid metabolome in neural tumors: identification of cytotoxic intermediates. FASEB J 24:906–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Serhan CN, Chiang N (2008) Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br J Pharmacol 153:S200–S215

    Article  CAS  PubMed  Google Scholar 

  23. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 101:8491–8496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mouradian M, Kikawa KD, Dranka BP, Komas SM, Kalyanaraman B, Pardini RS (2015) Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mol Carcinog 54:810–820

    Article  CAS  PubMed  Google Scholar 

  25. Pal A, Das S (2015) Morphine causes persistent induction of nitrated neurofilaments in cortex and subcortex even during abstinence. Neuroscience 291:177–188

    Article  CAS  PubMed  Google Scholar 

  26. Ng Y, Barhoumi R, Tjalkens RB, Fan YY, Kolar S, Wang N, Lupton JR, Chapkin RS (2005) The role of docosahexaenoic acid in mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes. Carcinogenesis 26:1914–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boneva NB, Yamashima T (2012) New insights into ‘‘GPR40-CREB interaction in adult neurogenesis’’ specific for primates. Hippocampus 22:896–905

    Article  CAS  PubMed  Google Scholar 

  28. Calderon F, Kim HY (2004) Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem 90:979–988

    Article  CAS  PubMed  Google Scholar 

  29. Cao D, Xue R, Xu J, Liu Z (2005) Effects of docosahexaenoic acid on the survival and neurite outgrowth of rat cortical neurons in primary cultures. J Nutr Biochem 16:538–546

    Article  CAS  PubMed  Google Scholar 

  30. Cao D, Kevala K, Kim J, Moon HS, Jun SB, Lovinger D, Kim HY (2009) Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem 111:510–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He C, Qu X, Cui L, Wang J, Kang JX (2009) Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci USA 106:11370–11375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Robson LG, Dyall S, Sidloff D, Michael-Titus AT (2010) Omega-3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurons throughout development and in aged animals. Neurobiol Aging 31:678–687

    Article  CAS  PubMed  Google Scholar 

  33. Han S, Zhang KH, Lu PH, Xu XM (2004) Effects of annexins II and V on survival of neurons and astrocytes in vitro. Acta Pharmacol Sin 25:602–610

    CAS  PubMed  Google Scholar 

  34. Roseman BJ, Bollen A, Hsu J, Lamborn K, Israel MA (1994) Annexin II marks astrocytic brain tumors of high histologic grade. Oncol Res 6:561–567

    CAS  PubMed  Google Scholar 

  35. Zhai H, Acharya S, Gravanis I, Mehmood S, Seidman RJ, Shroyer KR, Hajjar KA, Tsirka SE (2011) Annexin A2 promotes glioma cell invasion and tumor progression. J Neurosci 31:14346–14360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Madureira PA, Hill R, Miller VA, Giacomantonio C, Lee PW, Waisman DM (2011) Annexin A2 is a novel cellular redox regulatory protein involved in tumorigenesis. Oncotarget 2:1075–1093

    Article  PubMed  PubMed Central  Google Scholar 

  37. D’Eliseo D, Velotti F (2016) Omega-3 fatty acids and cancer cell cytotoxicity: implications for ulti-targeted cancer therapy. J Clin Med 5:15

    Article  PubMed Central  Google Scholar 

  38. Cao WD, Kawai N, Miyake K, Zhang X, Fei Z, Tamiya T (2014) Relationship of 14-3-3zeta (ζ), HIF-1α, and VEGF expression in human brain gliomas. Brain Tumor Pathol 31:1–10

    Article  PubMed  Google Scholar 

  39. Hekman M, Albert S, Galmiche A, Rennefahrt UE, Fueller J, Fischer A, Puehringer D, Wiese S, Rapp UR (2006) Reversible membrane interaction of BAD requires two C-terminal lipid binding domains in conjunction with 14-3-3 protein binding. J Biol Chem 281:17321–17336

    Article  CAS  PubMed  Google Scholar 

  40. Cao W, Yang X, Zhou J, Teng Z, Cao L, Zhang X, Fei Z (2010) Targeting 14-3-3 protein, difopein induces apoptosis of human glioma cells and suppresses tumor growth in mice. Apoptosis 15:230–241

    Article  CAS  PubMed  Google Scholar 

  41. Niemantsverdriet M, Wagner K, Visser M, Backendorf C (2008) Cellular functions of 14-3-3 zeta in apoptosis and cell adhesion emphasize its oncogenic character. Oncogene 27:1315–1319

    Article  CAS  PubMed  Google Scholar 

  42. Lee JH, Kwon EJ, Kim do H (2013) Calumenin has a role in the alleviation of ER stress in neonatal rat cardiomyocytes. Biochem Biophys Res Commun 439:327–332

    Article  CAS  PubMed  Google Scholar 

  43. Nagano K, Imai S, Zhao X, Yamashita T, Yoshioka Y, Abe Y, Mukai Y, Kamada H, Nakagawa S, Tsutsumi Y, Tsunoda S (2015) Identification and evaluation of metastasis-related proteins, oxysterol binding protein-like 5 and calumenin, in lung tumors. Int J Oncol 47:195–203

    PubMed  Google Scholar 

  44. Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833:3460–3470

    Article  CAS  PubMed  Google Scholar 

  45. Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150:685–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi HS, Li D, Zhang J, Wang YS, Yang L, Zhang HL, Wang XH, Mu B, Wang W, Ma Y, Guo FC, Wei YQ (2010) Silencing of pkm2 increases the efficacy of docetaxel in humanlung cancer xenografts in mice. Cancer Sci 101:1447–1453

    Article  CAS  PubMed  Google Scholar 

  47. Guo W, Zhang Y, Chen T, Wang Y, Xue J, Zhang Y, Xiao W, Mo X, Lu Y (2011) Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model. J Cancer Res Clin Oncol 137:65–72

    Article  CAS  PubMed  Google Scholar 

  48. Goldberg MS, Sharp PA (2012) Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med 209:217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, Thomas CJ, Vander Heiden MG, Cantley LC (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:1278–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bobba A, Amadoro G, La Piana G, Petragallo VA, Calissano P, Atlante A (2015) Glucose-6-phosphate tips the balance in modulating apoptosis in cerebellar granule cells. FEBS Lett 589:651–658

    Article  CAS  PubMed  Google Scholar 

  51. Chung YT, Matkowskyj KA, Li H, Bai H, Zhang W, Tsao MS, Liao J, Yang GY (2012) Overexpression and oncogenic function of aldo–keto reductase family 1B10 (AKR1B10) in pancreatic carcinoma. Mod Pathol 25:758–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yan LJ (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res 2014:137919

    PubMed  PubMed Central  Google Scholar 

  53. Merendino N, Loppi B, D’Aquino M, Molinari R, Pessina G, Romano C, Velotti F (2005) Docosahexaenoic acid induces apoptosis in the human PaCa-44 pancreatic cancer cell line by active reduced glutathione extrusion and lipid peroxidation. Nutr Cancer 52:225–233

    Article  CAS  PubMed  Google Scholar 

  54. Brockmann A, Bluwstein A, Kögel A, May S, Marx A, Tschan MP, Brunner T (2015) Thiazolides promote apoptosis in colorectal tumor cells via MAP kinase-induced Bim and Puma activation. Cell Death Dis 6:e1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li X, Liang Q, Liu W, Zhang N, Xu L, Zhang X, Zhang J, Sung JJ, Yu J (2015) Ras association domain family member 10 suppresses gastric cancer growth by cooperating with GSTP1 to regulate JNK/c-Jun/AP-1 pathway. Oncogene. doi:10.1038/onc.2015.300 (Epub ahead of print)

    Google Scholar 

  56. van Beelen VA, Aarts JM, Reus A, Mooibroek H, Sijtsma L, Bosch D, Rietjens IM, Alink GM (2006) Differential induction of electrophile-responsive element-regulated genes by n-3 and n-6 polyunsaturated fatty acids. FEBS Lett 580:4587–4590

    Article  PubMed  Google Scholar 

  57. Lo HW, Ali-Osman F (2002) Cyclic AMP mediated GSTP1 gene activation in tumor cells involves the interaction of activated CREB-1 with the GSTP1 CRE: a novel mechanism of cellular GSTP1 gene regulation. J Cell Biochem 87:103–116

    Article  CAS  PubMed  Google Scholar 

  58. Saeki K, Yuo A, Suzuki E, Yazaki Y, Takaku F (1999) Aberrant expression of cAMP-response-element-binding protein (‘CREB’) induces apoptosis. Biochem J 343:249–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Narayanan BA, Narayanan NK, Reddy BS (2001) Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Int J Oncol 19:1255–1262

    CAS  PubMed  Google Scholar 

  60. Martinasso G, Oraldi M, Trombetta A, Maggiora M, Bertetto O, Canuto RA, Muzio G (2007) Involvement of PPARs in cell proliferation and apoptosis in human colon cancer specimens and in normal and cancer cell lines. PPAR Res 2007:93416

  61. Diep QN, Touyz RM, Schiffrin EL (2000) Docosahexaenoic acid, a peroxisome proliferator-activated receptor-alpha ligand, induces apoptosis in vascular smooth muscle cells by stimulation of p38 mitogen-activated protein kinase. Hypertension 36:851–855

    Article  CAS  PubMed  Google Scholar 

  62. Kato T, Kolenic N, Pardini RS (2007) Docosahexaenoic acid (DHA), a primary tumor suppressive omega-3 fatty acid, inhibits growth of colorectal cancer independent of p53 mutational status. Nutr Cancer 58:178–187

    Article  CAS  PubMed  Google Scholar 

  63. Shaul YD, Seger R (2007) The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773:1213–1226

    Article  CAS  PubMed  Google Scholar 

  64. Das M, Ghosh M, Das S (2016) Thyroid Hormone-induced differentiation of astrocytes is associated with transcriptional upregulation of β-arrestin-1 and β-adrenergic receptor-mediated endosomal signaling. Mol Neurobiol 53(8):5178–5190

    Article  CAS  PubMed  Google Scholar 

  65. Zamarbide M, Etayo-Labiano I, Ricobaraza A, Martínez-Pinilla E, Aymerich MS, Luis Lanciego J, Pérez-Mediavilla A, Franco R (2014) GPR40 activation leads to CREB and ERK phosphorylation in primary cultures of neurons from the mouse CNS and in human neuroblastoma cells. Hippocampus 24:733–739

    Article  CAS  PubMed  Google Scholar 

  66. Cherkaoui-Malki M, Meyer K, Cao WQ, Latruffe N, Yeldandi AV, Rao MS, Bradfield CA, Reddy JK (2001) Identification of novel peroxisome proliferator-activated receptor alpha (PPARalpha) target genes in mouse liver using cDNA microarray analysis. Gene Expr 9:291–304

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was funded by the Council of Scientific and Industrial Research (CSIR), New Delhi, India. MD was a recipient of fellowship also from the CSIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumantra Das.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, M., Das, S. Identification of cytotoxic mediators and their putative role in the signaling pathways during docosahexaenoic acid (DHA)-induced apoptosis of cancer cells. Apoptosis 21, 1408–1421 (2016). https://doi.org/10.1007/s10495-016-1298-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1298-2

Keywords

Navigation