Skip to main content
Log in

The cardioprotective effect of salidroside against myocardial ischemia reperfusion injury in rats by inhibiting apoptosis and inflammation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The main purpose of this study was to investigate effect of salidroside (Sal) on myocardial ischemia reperfusion injury in rats and the underlying mechanism. Myocardial ischemia reperfusion injury (MI/RI) model was treated with 30 min of left anterior descending (LAD) occlusion followed by 24 h of reperfusion. The male Sprague–Dawley rats were randomly divided into 7 groups: (1) Sham; (2) Sham + diltiazem (Dit, 10 mg/kg); (3) Sham + Sal (40 mg/kg); (4) I/R; (5) I/R + diltiazem (Dit, 10 mg/kg); (6) I/R + Sal (20 mg/kg); (7) I/R + Sal (40 mg/kg). Sal could ameliorate myocardial ischemia reperfusion injury as evidenced by Histopathological examination and triphenyl tetrazolium chloride (TTC) staining. Moreover, terminal deoxynucleotidyl transferase dUTP nickend labeling (TUNEL) assay demonstrated that Sal suppressed myocardial apoptosis, which may be related to up-regulation of Bcl-2/Bax ratio and inhibition of caspase-3, caspase-9 activation. Pretreatment with Sal affected serum biochemical parameters and cardiac dysfunction compared with I/R group. Sal also attenuated the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in serum by inhibiting TLR4/NF-κB signaling pathway. Sal exerts strong favorable cardioprotective function on myocardial I/R injury which may relate to the down-regulation of the TLR4/NF-κB signaling pathway and the inhibition of cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sivaraman V, Yellon DM (2014) Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J Cardiovasc Pharmacol Ther 19(1):83–96

    Article  CAS  PubMed  Google Scholar 

  2. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H (1960) Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 70:68–78

    CAS  PubMed  Google Scholar 

  3. Zahler S, Massoudy P, Hartl H, Hähnel C, Meisner H, Becker BF (1999) Acute cardiac inflammatory responses to postischemic reperfusion during cardiopulmonary bypass. Cardiovasc Res 41(3):722–730

    Article  CAS  PubMed  Google Scholar 

  4. Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47

    Article  CAS  PubMed  Google Scholar 

  5. Fang L, Moore XL, Dart AM, Wang LM (2015) Systemic inflammatory response following acute myocardial infarction. J Geriatr Cardiol 12(3):305–312

    PubMed Central  PubMed  Google Scholar 

  6. Jennifer LS, Kasi VR, Jennifer LS (2009) Abstract 3610: direct thrombin inhibition limits ischemia and reperfusion injury in rats by decreasing oxidative stress, apoptosis, and inflammation. Circulation 120:835–836

    Article  Google Scholar 

  7. Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79(5):949–956

    Article  CAS  PubMed  Google Scholar 

  8. Anselmi A, Abbate A, Girola F, Nasso G, Biondi-Zoccai GG, Possati G et al (2004) Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: a review of evidence. Eur J Cardiothorac Surg 25(3):304–311

    Article  PubMed  Google Scholar 

  9. Shevtsov VA, Zholus BI, Shervarly VI, Vol’skij VB, Korovin YP, Khristich MP (2003) A randomized trial of two different doses of a SHR-5 Rhodiola rosea extract versus placebo and control of capacity for mental work. Phytomedicine 10(2–3):95–105

    Article  CAS  PubMed  Google Scholar 

  10. De Bock K, Eijnde BO, Ramaekers M, Hespel P (2004) Acute Rhodiola rosea intake can improve endurance exercise performance. Int J Sport Nutr Exerc Metab 14(3):298–307

    PubMed  Google Scholar 

  11. Qu ZQ, Zhou Y, Zeng YS, Lin YK, Li Y, Zhong ZQ et al (2012) Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. PLoS One 7(1):e29641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zhu Y, Shi YP, Wu D, Ji YJ, Wang X, Chen HL et al (2011) Salidroside protects against hydrogen peroxide-induced injury in cardiac H9c2 cells via PI3K-Akt dependent pathway. DNA Cell Biol 30(10):809–819

    Article  PubMed  Google Scholar 

  13. Tan CB, Gao M, Xu WR, Yang XY, Zhu XM, Du GH (2009) Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride. Biol Pharm Bull 32:1359–1363

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Zhang Q, Cheng Q, Ding F (2009) Protective effect of salidroside against H2O2-induced cell apoptosis in primary culture of rat hippocampal neurons. Mol Cell Biochem 332(1–2):85–93

    Article  CAS  PubMed  Google Scholar 

  15. Zhang L, Yu H, Sun Y, Lin X, Chen B, Tan C (2007) Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur J Pharmacol 564(1–3):18–25

    CAS  PubMed  Google Scholar 

  16. Cao LL, Du GH, Wang MW (2006) The effect of salidroside on cell damage induced by glutamate and intracellular free calcium in PC12 cells. J Asian Nat Prod Res 8(1–2):159–165

    Article  CAS  PubMed  Google Scholar 

  17. Rossini R, Senni M, Musumeci G, Ferrazzi P, Gavazzi A (2010) Prevention of left ventricular remodelling after acute myocardial infarction: an update. Recent Pat Cardiovasc Drug Discov 5(3):196–207

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, Liu J, Liu X, Fu Y, Zhang M, Lin Q et al (2011) Panaxnotoginsengsaponins inhibit ischemia-induced apoptosis by activating PI3K/Akt pathway in cardiomyocytes. J Ethnopharmacol 137(1):263–270

    Article  CAS  PubMed  Google Scholar 

  19. Kumar D, Jugdutt BI (2003) Apoptosis and oxidants in the heart. J Lab Clin Med 142(5):288–297

    Article  CAS  PubMed  Google Scholar 

  20. Cook SA, Sugden PH, Clerk A (1999) Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential. Circ Res 85(10):940–949

    Article  CAS  PubMed  Google Scholar 

  21. Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH (2005) Molecular biology of apoptosis in ischemia and reperfusion. J Invest Surg 18(6):335–350

    Article  PubMed  Google Scholar 

  22. Dong JW, Zhu HF, Zhu WZ, Ding HL, Ma TM, Zhou ZN (2003) Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression. Cell Res 13(5):385–391

    Article  CAS  PubMed  Google Scholar 

  23. Xiong J, Xue FS, Yuan YJ, Wang Q, Liao X, Wang WL (2010) Cholinergic anti-inflammatory pathway: a possible approach to protect against myocardial ischemia reperfusion injury. Chin Med J (Engl) 123(19):2720–2726

    CAS  Google Scholar 

  24. Ahn J, Kim J (2012) Mechanisms and consequences of inflammatory signaling in the myocardium. Curr Hypertens Rep 14(6):510–516

    Article  CAS  PubMed  Google Scholar 

  25. Otsui K, Inoue N, Kobayashi S, Shiraki R, Honjo T, Takahashi M et al (2007) Enhanced expression of TLR4 in smooth muscle cells in human atherosclerotic coronary arteries. Heart Vessels 22(6):416–422

    Article  PubMed  Google Scholar 

  26. Li Y, Si R, Feng Y (2011) Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and Toll-like receptor 4. J Biol Chem 286(36):31308–31319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Shimamoto A, Chong AJ, Yada M, Shomura S, Takayama H, Fleisig AJ et al (2006) Inhibition of Toll-like receptor 4 with eritoran attenuates myocardial ischemia–reperfusion injury. Circulation 114(1 Suppl):1270–1274

    Google Scholar 

  28. Oyama J, BlaisJr C, Liu X, Pu M, Kobzik L (2004) Reduced myocardial ischemia–reperfusion injury in Toll-like receptor 4-deficient mice. Circulation 109(6):784–789

    Article  CAS  PubMed  Google Scholar 

  29. Xu H, Yao Y, Su Z, Yang Y, Kao R, Martin CM et al (2010) Endogenous HMGB1 contributes to ischemia-reperfusion-induced myocardial apoptosis by potentiating the effect of TNF-α/JNK. Am J Physiol Heart Circ Physiol 300(3):H913–921

    Article  PubMed Central  PubMed  Google Scholar 

  30. Ding HS, Yang J, Chen P, Yang J, Bo SQ, Ding JW (2013) The HMGB1-TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis. Gene 527(1):389–393

    Article  CAS  PubMed  Google Scholar 

  31. Chen CC, Young JL, Monzon RI, Chen N, Todorovic V, Lau LF (2007) Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO J 26(5):1257–1267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Scientific & Technological major special Project “significant creation of new drugs” (2011ZX09102-002-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunhua Ma, Yu Liu or Tianhua Yan.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Wei, T., Gao, J. et al. The cardioprotective effect of salidroside against myocardial ischemia reperfusion injury in rats by inhibiting apoptosis and inflammation. Apoptosis 20, 1433–1443 (2015). https://doi.org/10.1007/s10495-015-1174-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1174-5

Keywords

Navigation